Saltar la navegación

4.2 Con cada truco una operación

Diccionario

Avanzar

La imagen muestra la silueta de una persona de la cual aparece una flecha hacia otra persona que está andando

Definición:

Continuar o adelantar

Ejemplo:

En el juego debíamos avanzar lo más rápido posible

Cuestionario

La imagen muestra una lista con diferentes números y una mano escribiendo sobre ellos

Definición:

Lista de preguntas que se proponen con cualquier fin

Ejemplo:

La compañía eléctrica nos envió un cuestionario la semana pasada

Desvelar

La imagen muestra la cara de un hombre sobre la cual hay, a modo de pensamiento, un círculo rojo con exclamaciones

Definición:

Descubrir algo oculto o desconocido, sacarlo a la luz

Ejemplo:

El mago no quiso desvelar el secreto de su truco

Inventar

La imagen muestra la cara de un hombre sobre la cual hay, a modo de pensamiento, un cuerpo de una persona con signos de exclamaciones

Definición:

Descubrir algo nuevo

Ejemplo:

En clase tuvimos que inventar un instrumento que sirviese para calcular la temperatura

Potencias

La imagen muestra el dos elevado al cubo, un igual y posteriormente el número dos multiplicado tres veces.

Definición:

La potencia de un número muestra cuántas veces se usa el mismo número en una multiplicación.

Ejemplo:

Las potencias son importantes para poder resolver problemas matemáticos.

Raíces

La imagen muestra el símbolo matemático de raíz cuadrada

Definición:

Cantidad que se ha de multiplicar por sí misma una o más veces para obtener un número determinado.

Ejemplo:

Calcular raíces era la operación matemática que más me gustaba.

Referirnos

La imagen muestra una hoja con información

Definición:

Narración o explicación de algo

Ejemplo:

El mensaje que nos enviaron se refería a la excursión del próximo mes

Secretos

La imagen muestra a una mujer susurrándole al oído a un niño pequeño

Definición:

Conocimiento exclusivo que alguien tiene sobre algo

Ejemplo:

Los amigos se cuentan sus secretos

Simplificada

La imagen muestra a una persona  de la cual sale un globo, a modo de pensamiento, con los números uno, dos y tres

Definición:

Hacer más fácil una cosa

Ejemplo:

Juan nos ayudó a comprender la actividad porque simplificó el vocabulario

1. Vamos a añadir algo más

Ahora que has aprendido qué es una incógnita, cómo se puede utilizar en matemáticas y a escribir algunas expresiones algebraicas sencillas, puedes avanzar con un truco de magia matemática diferente.

Esto supone realizar otro tipo de operaciones, pero te ayudará a conocer trucos más sorprendentes.

La imagen muestra la silueta de una persona de la cual aparece una flecha hacia otra persona que está andando

Definición:

Continuar o adelantar

Ejemplo:

En el juego debíamos avanzar lo más rápido posible

Recuerda

La imagen muestra un pictograma de recordar con una persona pensando en una bola roja

La expresión algebraica más simple puede estar formada por un número que multiplica a una letra, por ejemplo 3·x

El número 3 representa el coeficiente y x la incógnita, el número desconocido con el que puedo hacer operaciones matemáticas.

No olvides

La imagen muestra un pictograma de algo importante con dos personas mirando un mismo rectángulo sobre el que hay un círculo rojo destacado

Ese monomio tiene un significado.

Por ejemplo, 3·x significa el triple de un número.

Pero también has visto que x + 1 representa el siguiente número a x, el consecutivo.

En general, has visto que un número más 7 se puede representar como x + 7

Además

La imagen muestra un pictograma de algo añadido a una lista, aparecen dos marcas verdes y una flecha que indica la sigueinte

Imagina que quieres expresar un número más 7. Sería x + 7.

¿Cómo sería el triple de ese resultado?

Hay que multiplicar por tres toda esa expresión algebraica: hay que hacer el triple de x y de 7

3·(x + 7)

Se utiliza un paréntesis para indicar que el 3 multiplica a toda la expresión algebraica, a la incógnita x y al número 7.

Del revés

La imagen muestra un pictograma que indica que algo está del revés mostrando una persona con la cara tapada por el pelo y una camiseta con un corazón

En otras ocasiones, en lugar de expresarlo con un paréntesis necesitaré quitar ese paréntesis de una expresión algebraica.

Por ejemplo:

3·(x + 7) Significa que quiero hacer el 3 multiplica a la incógnita x y al número 7.

3·(x + 7) = 3·x + 3·7 = 3x + 21

A esto se le conoce como propiedad distributiva ¿Te suena? ¿La has escuchado en otra ocasión?

Seguro que sí, y seguro que la utilizas en alguna ocasión aprendiendo trucos de magia matemática utilizando el Álgebra.

Lectura facilitada

Ya has visto diferentes expresiones algebraicas.

Las más sencillas son parecidas a esta: 3·X

3·X significaría que multiplicamos por 3 el número que represente la X.

También conoces otras expresiones, por ejemplo : X + 1.

X + 1 significa que hay que sumarle 1 al número que represente la X. 

Sabiendo esto, podrás expresar diferentes expresiones algebraicas.

Por ejemplo, para expresar un número más 7:

Sería X + 7.

El triple de este número lo representaríamos así:

3·X + 3·7

o de esta manera, que es más sencilla, utilizando paréntesis:

3·(X + 7)

Significa que el 3 multiplica a todo lo que está dentro del paréntesis.

Este proceso, utilizar el paréntesis y dejar fuera el número por el que hay que multiplicar todo lo que está dentro del mismo, se le conoce como propiedad distributiva.

La imagen muestra a una persona y sobre su cabeza un bocadillo simulando que está pensando. Dentro de este bocadillo aparecen los números uno, dos y tres.

Definición:

Que es fácil o no presenta dificultad

Ejemplo:

El profesor nos dijo que en el examen tendríamos que realizar operaciones sencillas

La imagen muestra a una persona simulando que está hablando, en uno de los bocadillos aparece un signo de interrogación y en el otro de exclamación

Definición:

Decir algo con palabras

Ejemplo:

Cuando Mariano se pone nervioso no se sabe expresar

2. Fíjate en este nuevo truco de matemagia

Vamos a descubrir el truco

A continuación vas a descubrir los secretos de este truco para que puedas hacerlo tú e incluso inventar uno parecido.

Vamos a utilizar una incógnita

La imagen muestra un pictograma de algo desconocido con la figura de una persona junto a un interrogante

En la explicación del truco, se dice que es suficiente con utilizar el número de la esquina superior derecha, multiplicarlo por 9 y sumarle 72. Pero, ¿por qué?

Para entenderlo, vamos a utilizar una incógnita para referirnos a este número. Imagina que el primer número del recuadro es x.

El siguiente número será x + 1; El siguiente x + 2.

El primer número de la siguiente fila, el de la próxima semana, será x + 7. El siguiente x + 8 y el siguiente x + 9.

El primer número de la tercera fila, el de la segunda semana, será x + 14. El siguiente x + 15 y el siguiente x + 16.

   x      x+1     x+2

x+7     x+8    x+9

x+14   x+15   x+16  

¿Qué se queda en cada fila?

Como el truco consiste en sumar, puedes ver lo que se obtiene al sumar en cada fila:

  x  +   x+1   +  x+2 = 3x + 3

x+7  +   x+8  +  x+9 = 3x + 24

x+14 +  x+15 +  x+16 = 3x + 45

¿Y si sumas el resultado de todas las filas?

La imagen muestra un pictograma que indica añadir con dos bolas rojas que apuntan con una flecha a un grupo mayor de bolas rojas

Si sumas el resultado de todas las filas tendrás la siguiente expresión:

3x + 3 + 3x + 24 + 3x + 45 = 9x + 72

¿Hay algo en común?

La imagen muestra un pictograma de igualdad mostrando dos recuadros rojos con un signo de igual encima y un círculo blanco a la derecha

Fíjate en los números que has obtenido: 9 y 72. ¿Tienen algo en común? ¿Tienen algún factor en común?

¡Exacto!  Los dos números son múltiplos de 9.

9 = 9·1

72 = 9·8

Puedes dejar la expresión algebraica más sencilla

La imagen muestra a una persona  de la cual sale un globo, a modo de pensamiento, con los números uno, dos y tres

Si en una expresión algebraica dos o más números tienen el mismo factor, puedes escribirlo de manera simplificada utilizando un paréntesis.

9·x + 72 = 9·x + 9·8 = 9 · (x + 8)

Dos formas para explicar el truco

Con cualquier recuadro que cojas en el calendario, si X es el número de la esquina superior izquierda, el resultado de la suma de las 9 cifras será igual a 9 · (x + 8) = 9·x + 72

La imagen muestra a una persona  de la cual sale un globo, a modo de pensamiento, con los números uno, dos y tres

Definición:

Hacer más fácil una cosa

Ejemplo:

Juan nos ayudó a comprender la actividad porque simplificó el vocabulario

La imagen muestra a una mujer susurrándole al oído a un niño pequeño

Definición:

Conocimiento exclusivo que alguien tiene sobre algo

Ejemplo:

Los amigos se cuentan sus secretos

La imagen muestra la cara de un hombre sobre la cual hay, a modo de pensamiento, un cuerpo de una persona con signos de exclamaciones

Definición:

Descubrir algo nuevo

Ejemplo:

En clase tuvimos que inventar un instrumento que sirviese para calcular la temperatura

La imagen muestra una hoja con información

Definición:

Narración o explicación de algo

Ejemplo:

El mensaje que nos enviaron se refería a la excursión del próximo mes

3. Igualdad y paralelas

La imagen muestra al matemático Robert Recorde

El símbolo de las dos rayas = que indican igualdad, se empezó a usar en el Reino Unido hace 400 años, sobre 1557, por el médico y matemático inglés Robert Recorde. 

Recorde decía en un texto que no hay nada más igual que dos líneas paralelas. Es decir, dos líneas que mantienen la misma distancia entre sí.

La imagen muestra el texto donde el matemático Robert Recorde explica porque el signo igual son dos líneas paralelas

4. Nos entrenamos para ser un gran matemago

Ahora tendrás que practicar para llegar a ser un gran matemago y comprender todos los misterios de estos trucos.

Al final seguro que eres capaz de hacer uno propio.

La imagen muestra un mago con túnica amarilla y sombrero de pico

Opción A: Podemos empezar con operaciones sencillas

En primer lugar, vas a comenzar con algunas operaciones de expresiones algebraicas. Fíjate bien cómo se hacen para luego hacerlas tú.

Agrupar términos semejantes

Seguro que recuerdas que cada término se suma con su semejante.

x + 3 + x + 5 + x + 1 = 3·x + 9

x + 2 + 3x + 5 - x - 4 = 3x + 3

x - 7 + 2x + 1 + 5x - 2 = 8x - 8

Quitar paréntesis

Recuerda que cuando hay un número que multiplica a una expresión algebraica que está dentro de un paréntesis, el número de fuera multiplica a todos los términos:

2·(x + 5) = 2x + 10

3·(4 - x) = 12 - 3x

-2·(x + 4) = -2x - 8

-3(x - 1) = -3x + 3

¿Y si todo aparece en una misma operación?

Podemos encontrarnos con paréntesis en una operación algebraica como 2·(X + 5) + 3X

Primero hay que quitar el paréntesis y luego agrupar términos semejantes:

2·(x + 5) + 3x= 2x+ 10 + 3x = 5x + 10

3·(x - 4) +5x - 6 = 3x -12 + 5x - 6 = 8x -18

3(x + 2) + 4·(x - 1) = 3x + 6 + 4x - 4 = 7 + 2

5·(2 - x) - 2·(x - 2) = 10 - 5x - 2x + 4 = -7x +14

2(1 - x) - (x + 3) = 2 - 2x - x - 3 = -1 -3x

También puedes poner el paréntesis

Recuerda que cuando se repite un factor en los términos de una expresión algebraica puedes simplificar usando un paréntesis:

2x + 4 = 2x + 2·2 = 2·(x + 2)

3x + 6 = 3x + 3·2 = 3·(x + 2)

3x - 9 = 3x - 3·3 = 3·(x - 3)

9 - 9x = 9·1 - 9·x = 9·(1 - x)

2x² + 3x = 2·x·x + 3·x = x·(2x + 3)

3x² + 6x = 3·x·x + 2·3·x = 3x·(x + 2)

Ahora te toca a ti. Tienes que calcular el resultado de las siguientes operaciones algebraicas.

Agrupar términos semejantes

x + 8 + x + 1 + x - 2 =

x + 8 + 2x - 3 + x =

2x - 5 + 3x + 7 - x + 2 =

Quitar paréntesis

2·(x + 6) =

4·(2 - x) =

-3·(x + 1) =

-2(x - 2) =

¿Y si todo aparece en una misma operación?

2·(x + 3) + 2x=

4·(x - 2) +2x - 1 =

2·(x + 2) + 3·(x - 1) =

7·(1 - x) - 2·(x - 1) =

3·(1 - x) - (x + 2) =

También puedes poner el paréntesis

2x + 8 =

3x + 12 =

5x - 10 =

7 - 7x =

5x² + 2x =

3x² + 6x =

¿Has tenido algún problema?

Comprueba las soluciones de las actividades

Agrupar términos semejantes

x + 8 + x + 1 + x - 2 = 3x + 7

x + 8 + 2x - 3 + x = 4x + 5

2x - 5 + 3x + 7 - x + 2 = 4x + 4

Quitar paréntesis

2·(x + 6) = 2x + 12

4·(2 - x) = 8 - 4x

-3·(x + 1) = -3x - 3

-2(2x - 2) = -4x + 4

¿Y si todo aparece en una misma operación?

2·(x + 3) + 2x = 2x + 6 + 2x = 4x + 6

4·(x - 2) +2x - 1 = 4x - 8 + 2x - 1 = 6x - 9

2·(x + 2) + 3·(x - 1) = 2x + 4 + 3x - 3 = 5x + 1

7·(1 - x) - 2·(x - 1) = 7 - 7x - 2x + 2 = -9x + 9

3·(1 - x) - (2x + 2) = 3 - 3x - 2x - 2 = 1 - 5x

También puedes poner el paréntesis

2x + 8 = 2·(x + 4)

3x + 12 = 3· (x + 4)

5x - 10 = 5·(x - 2)

7 - 7x =  7·(1 - x)

5x² + 2x =5·x·x + x = x·(5x + 2)

5x² + 15x = 5·x·x + 3·5·x = 5x·(x + 3)

Opción B: Hay que ser ordenado para entender el truco

Ahora hay que ver si has entendido bien las operaciones que aparecen en el truco para ponerlo en práctica.

Tendrás que ordenar los pasos de las operaciones que aparecen en las siguientes actividades.

Opción B1

5·(x + 3) - 7 = ...

  • 5·x + 5·3 - 7
  • 5x + 15 - 7
  • 5x + 8

¿Quieres saber si ese orden es correcto?

¡Genial! Has sabido poner cada paso en orden.

No es correcto... Recuerda que primero tienes que multiplicar el número que hay delante del paréntesis por cada uno de los términos que hay dentro. Luego hay que agrupar los números.

Opción B2

3·(x + 2) + 2·(x - 1) = ...

  • 3x + 6 + 2x - 2
  • 5x + 6 - 2
  • 5x + 4

¿Quieres saber si ese orden es correcto?

¡Genial! Has sabido poner cada paso en orden.

No es correcto... Recuerda que primero tienes que multiplicar el número que hay delante del paréntesis por cada uno de los términos que hay dentro. Luego agrupar las incógnitas y luego los números.

Opción B3

4(x + 1) - 2(x + 1) = ...

  • 4x + 4 - 2x - 2
  • 4x + 4 - 2
  • 4x + 2
  • 2·(x + 1)

¿Quieres saber si ese orden es correcto?

¡Genial! Has sabido poner cada paso en orden.

No es correcto... Recuerda que primero tienes que multiplicar el número que hay delante del paréntesis por cada uno de los términos que hay dentro. Luego agrupar las incógnitas y luego los números. Por último puedes comprobar si escribir si las incógnitas y el número final tienen algún factor en común.

Opción B4

6·(x + 3) - 2·(x + 4) - 2 = ...

  • 6x + 18 - 2x - 8 - 2
  • 4x + 18 - 8 - 2
  • 4x + 10 - 2
  • 4x + 8
  • 4·(x + 2)

¿Quieres saber si ese orden es correcto?

¡Genial! Has sabido poner cada paso en orden.

No es correcto... Recuerda que primero tienes que multiplicar el número que hay delante del paréntesis por cada uno de los términos que hay dentro. Luego agrupar las incógnitas y luego los números. Por último puedes comprobar si escribir si las incógnitas y el número final tienen algún factor en común.

Motus dice: ¿Has hablado contigo mismo para resolver esta actividad?

No, no eres raro. Es muy frecuente que cuando estamos trabajando hablemos en silencio con nosotros mismos.

Es una forma de comprender mejor lo que hacemos y de buscar soluciones a las tareas o actividades.

De hecho, te aconsejo que lo hagas con mucha frecuencia porque te ayudará a:

  • Recordar algunos pasos que necesites para realizar la actividad.
  • Hacerte preguntas para entender mejor la información.
  • Animarte a terminar la actividad, mantenerte concentrado...
  • Saber cómo te sientes ante la actividad.
  • Habla contigo mismo y aprenderás mejor.

Opción C: ¿Qué crees que tienen en común?

En algunas ocasiones, para terminar la explicación de un truco podemos ver si las incógnitas y los números tienen algún factor en común.

En esos casos sabes que se puede escribir la expresión algebraica usando un paréntesis.

Ahora vas a practicar ese paso con el siguiente cuestionario.

La imagen muestra una lista con diferentes números y una mano escribiendo sobre ellos

Definición:

Lista de preguntas que se proponen con cualquier fin

Ejemplo:

La compañía eléctrica nos envió un cuestionario la semana pasada

undefined
%E9%B0%F3%E1%FB%F5%FC%F3%E6%E7%E0%F3%B0%A8%B0%B0%BE%B0%F3%E7%E6%FA%FD%E0%B0%A8%B0%B0%BE%B0%F3%E7%E6%FA%FD%E0%C4%FB%F6%F7%FD%B0%A8%B0%B0%BE%B0%E6%EB%E2%F7%D5%F3%FF%F7%B0%A8%B0%C1%F7%FE%F7%F1%F1%FB%FD%FC%F3%B0%BE%B0%F7%FC%F6%C4%FB%F6%F7%FD%B0%A8%A2%BE%B0%FB%F6%C4%FB%F6%F7%FD%B0%A8%B0%B0%BE%B0%E1%E6%F3%E0%E6%C4%FB%F6%F7%FD%B0%A8%A2%BE%B0%FB%FC%E1%E6%E0%E7%F1%E6%FB%FD%FC%E1%D7%EA%F7%B0%A8%B0%B7%A1%D1%E2%B7%A1%D7%B7%A1%D1%E1%E2%F3%FC%B7%A0%A2%E1%E6%EB%FE%F7%B7%A1%D6%B7%A0%A0%F4%FD%FC%E6%BF%E1%FB%E8%F7%B7%A1%D3%B7%A0%A2%A3%A6%E2%E6%B7%A1%D0%B7%A0%A0%B7%A1%D7%D7%FC%B7%A0%A2%F3%FE%F5%E7%FC%F3%E1%B7%A0%A2%FD%F1%F3%E1%FB%FD%FC%F7%E1%B7%A0%D1%B7%A0%A2%E2%F3%E0%F3%B7%A0%A2%E6%F7%E0%FF%FB%FC%F3%E0%B7%A0%A2%FE%F3%B7%A0%A2%F7%EA%E2%FE%FB%F1%F3%F1%FB%B7%D4%A1%FC%B7%A0%A2%F6%F7%B7%A0%A2%E7%FC%B7%A0%A2%E6%E0%E7%F1%FD%B7%A0%A2%E2%FD%F6%F7%FF%FD%E1%B7%A0%A2%E4%F7%E0%B7%A0%A2%E1%FB%B7%A0%A2%FE%F3%E1%B7%A0%A2%FB%FC%F1%B7%D4%A1%F5%FC%FB%E6%F3%E1%B7%A0%A2%EB%B7%A0%A2%FE%FD%E1%B7%A0%A2%FC%B7%D4%D3%FF%F7%E0%FD%E1%B7%A0%A2%E6%FB%F7%FC%F7%FC%B7%A0%A2%F3%FE%F5%B7%D4%D3%FC%B7%A0%A2%F4%F3%F1%E6%FD%E0%B7%A0%A2%F7%FC%B7%A0%A2%F1%FD%FF%B7%D4%D3%FC%BC%B7%A1%D1%BD%E1%E2%F3%FC%B7%A1%D7%B7%A1%D1%BD%E2%B7%A1%D7%B7%A2%D3%B7%A1%D1%E2%B7%A1%D7%B7%A1%D1%E1%E2%F3%FC%B7%A0%A2%E1%E6%EB%FE%F7%B7%A1%D6%B7%A0%A0%F4%FD%FC%E6%BF%E1%FB%E8%F7%B7%A1%D3%B7%A0%A2%A3%A6%E2%E6%B7%A1%D0%B7%A0%A0%B7%A1%D7%D7%FC%B7%A0%A2%F7%E1%FD%E1%B7%A0%A2%F1%F3%E1%FD%E1%B7%A0%A2%E1%F3%F0%F7%E1%B7%A0%A2%E3%E7%F7%B7%A0%A2%E1%F7%B7%A0%A2%E2%E7%F7%F6%F7%B7%A0%A2%F7%E1%F1%E0%FB%F0%FB%E0%B7%A0%A2%FE%F3%B7%A0%A2%F7%EA%E2%E0%F7%E1%FB%B7%D4%A1%FC%B7%A0%A2%F3%FE%F5%F7%F0%E0%F3%FB%F1%F3%B7%A0%A2%E7%E1%F3%FC%F6%FD%B7%A0%A2%E7%FC%B7%A0%A2%E2%F3%E0%B7%D7%AB%FC%E6%F7%E1%FB%E1%BC%B7%A1%D1%BD%E1%E2%F3%FC%B7%A1%D7%B7%A1%D1%BD%E2%B7%A1%D7%B7%A2%D3%B7%A1%D1%E2%B7%A1%D7%B7%A1%D1%F3%B7%A0%A2%FC%F3%FF%F7%B7%A1%D6%B7%A0%A0%FE%FB%FC%F9%A0%F7%A7%A5%F6%F4%F7%A6%BF%F3%A2%A1%A4%BF%A7%AB%F3%F3%BF%A3%A7%A2%AA%BF%F1%A3%A4%A7%F4%F7%A2%A6%AB%A7%F0%A1%B7%A0%A0%B7%A1%D7%B7%A1%D1%BD%F3%B7%A1%D7%B7%A1%D1%E1%E2%F3%FC%B7%A0%A2%E1%E6%EB%FE%F7%B7%A1%D6%B7%A0%A0%F4%FD%FC%E6%BF%E1%FB%E8%F7%B7%A1%D3%B7%A0%A2%A3%A6%E2%E6%B7%A1%D0%B7%A0%A0%B7%A1%D7%D3%FA%FD%E0%F3%B7%A0%A2%E4%F3%E1%B7%A0%A2%F3%B7%A0%A2%E2%E0%F3%F1%E6%FB%F1%F3%E0%B7%A0%A2%F7%E1%F7%B7%A0%A2%E2%F3%E1%FD%B7%A0%A2%F1%FD%FC%B7%A0%A2%F7%FE%B7%A0%A2%E1%FB%F5%E7%FB%F7%FC%E6%F7%B7%A0%A2%B7%A1%D1%F3%B7%A0%A2%FA%E0%F7%F4%B7%A1%D6%B7%A0%A0%B7%A0%A1%E6%A1%F6%F4%F1%F1%A0%AB%A0%BF%F1%A4%F7%A3%BF%A6%F6%F0%A5%BF%F4%F3%A3%F7%BF%A1%A3%AA%AA%AA%F6%AA%F7%A3%A2%F4%F4%B7%A0%A0%B7%A0%A2%FB%F6%B7%A1%D6%B7%A0%A0%FE%FB%FC%F9%A1%F6%F4%F1%F1%A0%AB%A0%BF%F1%A4%F7%A3%BF%A6%F6%F0%A5%BF%F4%F3%A3%F7%BF%A1%A3%AA%AA%AA%F6%AA%F7%A3%A2%F4%F4%B7%A0%A0%B7%A0%A2%F1%FE%F3%E1%E1%B7%A1%D6%B7%A0%A0%F7%EA%F7%BF%E6%FD%FD%FE%E6%FB%E2%B7%A0%A2%F6%F7%F4%FB%FC%FB%E6%FB%FD%FC%BF%E6%E6%B7%A0%A2%E6%FB%E6%FE%F7%F6%BF%E6%E6%B7%A0%A0%B7%A0%A2%E6%FB%E6%FE%F7%B7%A1%D6%B7%A0%A0%D1%E7%F7%E1%E6%FB%FD%FC%F3%E0%FB%FD%B7%A0%A2%B7%A5%D1%B7%A0%A2%D3%F1%F1%F7%F6%F7%B7%A0%A2%F3%B7%A0%A2%FE%F3%B7%A0%A2%F6%F7%F4%FB%FC%FB%F1%FB%B7%D4%A1%FC%B7%A0%A2%F6%F7%B7%A0%A2%D1%E7%F7%E1%E6%FB%FD%FC%F3%E0%FB%FD%B7%A0%A0%B7%A1%D7%F1%E7%F7%E1%E6%FB%FD%FC%F3%E0%FB%FD%B7%A1%D1%BD%F3%B7%A1%D7%BC%B7%A1%D1%BD%E1%E2%F3%FC%B7%A1%D7%B7%A1%D1%BD%E2%B7%A1%D7%B7%A2%D3%B7%A1%D1%E1%E6%EB%FE%F7%B7%A0%A2%E6%EB%E2%F7%B7%A1%D6%B7%A0%A0%E6%F7%EA%E6%BD%F1%E1%E1%B7%A0%A0%B7%A1%D7%E2%B7%A0%A2%B7%A5%D0%B7%A0%A2%FF%F3%E0%F5%FB%FC%BF%F0%FD%E6%E6%FD%FF%B7%A1%D3%B7%A0%A2%A2%BC%A0%A7%F1%FF%B7%A1%D0%B7%A0%A2%FE%FB%FC%F7%BF%FA%F7%FB%F5%FA%E6%B7%A1%D3%B7%A0%A2%A3%A0%A2%B7%A0%A7%B7%A0%A2%B7%A5%D6%F3%B7%A1%D3%FE%FB%FC%F9%B7%A0%A2%B7%A5%D0%B7%A0%A2%E1%FD%BF%FE%F3%FC%F5%E7%F3%F5%F7%B7%A1%D3%B7%A0%A2%E8%EA%EA%B7%A0%A2%B7%A5%D6%B7%A1%D1%BD%E1%E6%EB%FE%F7%B7%A1%D7%B7%A2%D3%B7%A1%D1%F6%FB%E4%B7%A0%A2%FB%F6%B7%A1%D6%B7%A0%A0%E6%A1%F6%F4%F1%F1%A0%AB%A0%BF%F1%A4%F7%A3%BF%A6%F6%F0%A5%BF%F4%F3%A3%F7%BF%A1%A3%AA%AA%AA%F6%AA%F7%A3%A2%F4%F4%B7%A0%A0%B7%A0%A2%F1%FE%F3%E1%E1%B7%A1%D6%B7%A0%A0%F7%EA%F7%BF%E6%FD%FD%FE%E6%FB%E2%BF%E6%F7%EA%E6%B7%A0%A0%B7%A1%D7%B7%A2%D3%B7%A1%D1%F4%FB%F5%E7%E0%F7%B7%A0%A2%F1%FE%F3%E1%E1%B7%A1%D6%B7%A0%A0%F7%EA%F7%BF%F4%FB%F5%E7%E0%F7%B7%A0%A2%F7%EA%F7%BF%FB%FF%F3%F5%F7%B7%A0%A2%F4%FE%FD%F3%E6%BF%FE%F7%F4%E6%B7%A0%A2%FE%FB%F1%F7%FC%E1%F7%BF%F1%E7%E1%E6%FD%FF%B7%A0%A0%B7%A0%A2%E1%E6%EB%FE%F7%B7%A1%D6%B7%A0%A0%E5%FB%F6%E6%FA%B7%A1%D3%B7%A0%A2%A3%A2%A2%E2%EA%B7%A1%D0%B7%A0%A2%FF%F3%E0%F5%FB%FC%BF%E0%FB%F5%FA%E6%B7%A1%D3%B7%A0%A2%A3%A2%E2%EA%B7%A1%D0%B7%A0%A0%B7%A1%D7%B7%A1%D1%FB%FF%F5%B7%A0%A2%E1%E0%F1%B7%A1%D6%B7%A0%A0%E0%F7%E1%FD%E7%E0%F1%F7%E1%BD%DB%DF%D5%CD%DF%D3%C6%A3%D7%C1%DD%CD%C0%D7%D3%A2%A6%CD%C2%D5%A2%A5%CD%F1%E7%F7%E1%E6%FB%FD%FC%F3%E0%FB%FD%CD%C4%A2%A3%BC%E2%FC%F5%B7%A0%A0%B7%A0%A2%F3%FE%E6%B7%A1%D6%B7%A0%A0%DE%F3%B7%A0%A2%FB%FF%F3%F5%F7%FC%B7%A0%A2%FF%E7%F7%E1%E6%E0%F3%B7%A0%A2%E7%FC%F3%B7%A0%A2%FE%FB%E1%E6%F3%B7%A0%A2%F1%FD%FC%B7%A0%A2%F6%FB%F4%F7%E0%F7%FC%E6%F7%E1%B7%A0%A2%FC%B7%D4%D3%FF%F7%E0%FD%E1%B7%A0%A2%EB%B7%A0%A2%E7%FC%F3%B7%A0%A2%FF%F3%FC%FD%B7%A0%A2%F7%E1%F1%E0%FB%F0%FB%F7%FC%F6%FD%B7%A0%A2%E1%FD%F0%E0%F7%B7%A0%A2%F7%FE%FE%FD%E1%B7%A0%A0%B7%A0%A2%E6%FB%E6%FE%F7%B7%A1%D6%B7%A0%A0%D1%E7%F7%E1%E6%FB%FD%FC%F3%E0%FB%FD%B7%A0%A2%B7%A0%A0%B7%A0%A2%E1%E6%EB%FE%F7%B7%A1%D6%B7%A0%A0%F4%FE%FD%F3%E6%B7%A1%D3%B7%A0%A2%FE%F7%F4%E6%B7%A1%D0%B7%A0%A0%B7%A0%A2%E5%FB%F6%E6%FA%B7%A1%D6%B7%A0%A0%A3%A0%A7%B7%A0%A0%B7%A0%A2%FA%F7%FB%F5%FA%E6%B7%A1%D6%B7%A0%A0%A3%A0%A7%B7%A0%A0%B7%A0%A2%BD%B7%A1%D7%B7%A1%D1%BD%F4%FB%F5%E7%E0%F7%B7%A1%D7%B7%A2%D3%B7%A1%D1%E2%B7%A1%D7%B7%A1%D1%E1%E6%E0%FD%FC%F5%B7%A1%D7%D6%F7%F4%FB%FC%FB%F1%FB%B7%D4%A1%FC%B7%A1%D3%B7%A1%D1%BD%E1%E6%E0%FD%FC%F5%B7%A1%D7%B7%A1%D1%BD%E2%B7%A1%D7%B7%A2%D3%B7%A1%D1%E2%B7%A1%D7%DE%FB%E1%E6%F3%B7%A0%A2%F6%F7%B7%A0%A2%E2%E0%F7%F5%E7%FC%E6%F3%E1%B7%A0%A2%E3%E7%F7%B7%A0%A2%E1%F7%B7%A0%A2%E2%E0%FD%E2%FD%FC%F7%FC%B7%A0%A2%F1%FD%FC%B7%A0%A2%F1%E7%F3%FE%E3%E7%FB%F7%E0%B7%A0%A2%F4%FB%FC%B7%A1%D1%BD%E2%B7%A1%D7%B7%A2%D3%B7%A1%D1%E2%B7%A1%D7%B7%A1%D1%E1%E6%E0%FD%FC%F5%B7%A1%D7%D7%F8%F7%FF%E2%FE%FD%B7%A1%D3%B7%A1%D1%BD%E1%E6%E0%FD%FC%F5%B7%A1%D7%B7%A1%D1%BD%E2%B7%A1%D7%B7%A2%D3%B7%A1%D1%E2%B7%A1%D7%DE%F3%B7%A0%A2%F1%FD%FF%E2%F3%B7%D4%A3%B7%D7%D6%F3%B7%A0%A2%F7%FE%B7%D7%AB%F1%E6%E0%FB%F1%F3%B7%A0%A2%FC%FD%E1%B7%A0%A2%F7%FC%E4%FB%B7%D4%A1%B7%A0%A2%E7%FC%B7%A0%A2%F1%E7%F7%E1%E6%FB%FD%FC%F3%E0%FB%FD%B7%A0%A2%FE%F3%B7%A0%A2%E1%F7%FF%F3%FC%F3%B7%A0%A2%E2%F3%E1%F3%F6%F3%B7%A1%D1%BD%E2%B7%A1%D7%B7%A2%D3%B7%A1%D1%BD%F6%FB%E4%B7%A1%D7%B0%BE%B0%FB%FC%E1%E6%E0%E7%F1%E6%FB%FD%FC%E1%B0%A8%B0%C1%F7%FE%F7%F1%F1%FB%FD%FC%F3%B2%FE%F3%E1%B2%E0%F7%E1%E2%E7%F7%E1%E6%F3%E1%B2%F1%FD%E0%E0%F7%F1%E6%F3%E1%B2%EB%B2%E2%E7%FE%E1%F3%B2%E1%FD%F0%E0%F7%B2%F7%FE%B2%F0%FD%E6a%FC%B2%CE%B0%E0%F7%E1%E2%FD%FC%F6%F7%E0%CE%B0%B2%B0%BE%B0%E1%FA%FD%E5%DF%FB%FC%FB%FF%FB%E8%F7%B0%A8%F4%F3%FE%E1%F7%BE%B0%FD%E2%E6%FB%FD%FC%E1%C0%F3%FF%F6%FD%FC%B0%A8%F4%F3%FE%E1%F7%BE%B0%F3%FC%E1%E5%F7%E0%E1%C0%F3%FF%F6%FD%FC%B0%A8%F4%F3%FE%E1%F7%BE%B0%E1%FA%FD%E5%C1%FD%FE%E7%E6%FB%FD%FC%B0%A8%E6%E0%E7%F7%BE%B0%E6%FB%FF%F7%C1%FA%FD%E5%C1%FD%FE%E7%E6%FB%FD%FC%B0%A8%A1%BE%B0%E7%E1%F7%DE%FB%E4%F7%E1%B0%A8%E6%E0%E7%F7%BE%B0%FC%E7%FF%F0%F7%E0%DE%FB%E4%F7%E1%B0%A8%A1%BE%B0%FB%E6%FB%FC%F7%E0%F3%E0%EB%B0%A8%E9%B0%E1%FA%FD%E5%D1%FE%E7%F7%B0%A8%F4%F3%FE%E1%F7%BE%B0%F1%FE%E7%F7%D5%F3%FF%F7%B0%A8%B0%B0%BE%B0%E2%F7%E0%F1%F7%FC%E6%F3%F5%F7%D1%FE%E7%F7%B0%A8%A6%A2%BE%B0%E1%FA%FD%E5%D1%FD%F6%F7%D3%F1%F1%F7%E1%E1%B0%A8%F4%F3%FE%E1%F7%BE%B0%F1%FD%F6%F7%D3%F1%F1%F7%E1%E1%B0%A8%B0%B0%BE%B0%FF%F7%E1%E1%F3%F5%F7%D1%FD%F6%F7%D3%F1%F1%F7%E1%E1%B0%A8%B0%B0%EF%BE%B0%E1%F7%FE%F7%F1%E6%E1%D5%F3%FF%F7%B0%A8%C9%E9%B0%E6%EB%E2%F7%B0%A8%A2%BE%B0%E6%FB%FF%F7%B0%A8%A3%BE%B0%FC%E7%FF%F0%F7%E0%DD%E2%E6%FB%FD%FC%E1%B0%A8%A1%BE%B0%E6%EB%E2%F7%C1%F7%FE%F7%F1%E6%B0%A8%A2%BE%B0%EA%B0%A8%A2%BE%B0%EB%B0%A8%A2%BE%B0%F3%E7%E6%FA%FD%E0%B0%A8%B0%B0%BE%B0%F3%FE%E6%B0%A8%B0%B0%BE%B0%F1%E7%E1%E6%FD%FF%C1%F1%FD%E0%F7%B0%A8%A3%BE%B0%E7%E0%FE%B0%A8%B0%B0%BE%B0%F3%E7%F6%FB%FD%B0%A8%B0%B0%BE%B0%FA%FB%E6%B0%A8%BF%A3%BE%B0%F7%E0%E0%FD%E0%B0%A8%BF%A3%BE%B0%FF%E1%F5%DA%FB%E6%B0%A8%B0%B0%BE%B0%FF%E1%F5%D7%E0%E0%FD%E0%B0%A8%B0%B0%BE%B0%E1%FD%E7%FC%F6%C4%FB%F6%F7%FD%B0%A8%A3%BE%B0%FB%FF%F3%F5%F7%C4%FB%F6%F7%FD%B0%A8%A3%BE%B0%FB%C4%FB%F6%F7%FD%B0%A8%A2%BE%B0%F4%C4%FB%F6%F7%FD%B0%A8%A2%BE%B0%E1%FB%FE%F7%FC%E6%C4%FB%F6%F7%FD%B0%A8%A2%BE%B0%E6%C1%FB%FE%F7%FC%E6%C4%FB%F6%F7%FD%B0%A8%A2%BE%B0%F7%C6%F7%EA%E6%B0%A8%B0%B0%BE%B0%E3%E7%F7%EA%E6%FB%FD%FC%B0%A8%B0-%C1%F7%B2%E2%E7%F7%F6%F7%B2%F7%E1%F1%E0%FB%F0%FB%E0%B2%FE%F3%B2%E1%FB%F5%E7%FB%F7%FC%E6%F7%B2%F7%EA%E2%E0%F7%E1%FBa%FC%B2%F3%FE%F5%F7%F0%E0%F3%FB%F1%F3%B2%E1%F3%F1%F3%FC%F6%FD%B2%F3%FE%F5h%FC%B2%F4%F3%F1%E6%FD%E0%B2%F1%FD%FFh%FC%B2%F3%B2%F3%FF%F0%FD%E1%B2%E6%7B%E0%FF%FB%FC%FD%E1%AD%B2%A1%EA%B2%B9%B2%A1%B2%AF%B2%BC%BC%BC%B0%BE%B0%FD%E2%E6%FB%FD%FC%E1%B0%A8%C9%B0%A4%EA%B0%BE%B0%A1%25%BA%EA%B2%B9%B2%A3%BB%B0%BE%B0%A1%25%BA%EA%B2%B9%B2%A1%BB%B0%BE%B0%B0%CF%BE%B0%E1%FD%FE%E7%E6%FB%FD%FC%B0%A8%B0%D0%B0%BE%B0%E1%FD%FE%E7%E6%FB%FD%FC%C3%E7%F7%E1%E6%FB%FD%FC%B0%A8%B0%B0%BE%B0%E2%F7%E0%F1%F7%FC%E6%F3%F5%F7%C1%FA%FD%E5%B0%A8%A1%A7%EF%BE%E9%B0%E6%EB%E2%F7%B0%A8%A2%BE%B0%E6%FB%FF%F7%B0%A8%A2%BE%B0%FC%E7%FF%F0%F7%E0%DD%E2%E6%FB%FD%FC%E1%B0%A8%A1%BE%B0%E6%EB%E2%F7%C1%F7%FE%F7%F1%E6%B0%A8%A2%BE%B0%EA%B0%A8%A2%BE%B0%EB%B0%A8%A2%BE%B0%F3%E7%E6%FA%FD%E0%B0%A8%B0%B0%BE%B0%F3%FE%E6%B0%A8%B0%B0%BE%B0%F1%E7%E1%E6%FD%FF%C1%F1%FD%E0%F7%B0%A8%A3%BE%B0%E7%E0%FE%B0%A8%B0%B0%BE%B0%F3%E7%F6%FB%FD%B0%A8%B0%B0%BE%B0%FA%FB%E6%B0%A8%BF%A3%BE%B0%F7%E0%E0%FD%E0%B0%A8%BF%A3%BE%B0%FF%E1%F5%DA%FB%E6%B0%A8%B0%B0%BE%B0%FF%E1%F5%D7%E0%E0%FD%E0%B0%A8%B0%B0%BE%B0%E1%FD%E7%FC%F6%C4%FB%F6%F7%FD%B0%A8%A3%BE%B0%FB%FF%F3%F5%F7%C4%FB%F6%F7%FD%B0%A8%A3%BE%B0%FB%C4%FB%F6%F7%FD%B0%A8%A2%BE%B0%F4%C4%FB%F6%F7%FD%B0%A8%A2%BE%B0%E1%FB%FE%F7%FC%E6%C4%FB%F6%F7%FD%B0%A8%A2%BE%B0%E6%C1%FB%FE%F7%FC%E6%C4%FB%F6%F7%FD%B0%A8%A2%BE%B0%F7%C6%F7%EA%E6%B0%A8%B0%B0%BE%B0%E3%E7%F7%EA%E6%FB%FD%FC%B0%A8%B0-%C1%F7%B2%E2%E7%F7%F6%F7%B2%F7%E1%F1%E0%FB%F0%FB%E0%B2%FE%F3%B2%E1%FB%F5%E7%FB%F7%FC%E6%F7%B2%F7%EA%E2%E0%F7%E1%FBa%FC%B2%F3%FE%F5%F7%F0%E0%F3%FB%F1%F3%B2%E1%F3%F1%F3%FC%F6%FD%B2%F3%FE%F5h%FC%B2%F4%F3%F1%E6%FD%E0%B2%F1%FD%FFh%FC%B2%F3%B2%F3%FF%F0%FD%E1%B2%E6%7B%E0%FF%FB%FC%FD%E1%AD%B2%A0%EA%B2%B9%B2%AA%B2%AF%B2%BC%BC%BC%B0%BE%B0%FD%E2%E6%FB%FD%FC%E1%B0%A8%C9%B0%A0%25%BA%EA%B2%B9%B2%A6%BB%B0%BE%B0%A4%EA%B0%BE%B0%A0%25%BA%EA%B2%B9%B2%A4%BB%B0%BE%B0%B0%CF%BE%B0%E1%FD%FE%E7%E6%FB%FD%FC%B0%A8%B0%D3%B0%BE%B0%E1%FD%FE%E7%E6%FB%FD%FC%C3%E7%F7%E1%E6%FB%FD%FC%B0%A8%B0%B0%BE%B0%E2%F7%E0%F1%F7%FC%E6%F3%F5%F7%C1%FA%FD%E5%B0%A8%A1%A7%EF%BE%E9%B0%E6%EB%E2%F7%B0%A8%A2%BE%B0%E6%FB%FF%F7%B0%A8%A2%BE%B0%FC%E7%FF%F0%F7%E0%DD%E2%E6%FB%FD%FC%E1%B0%A8%A1%BE%B0%E6%EB%E2%F7%C1%F7%FE%F7%F1%E6%B0%A8%A2%BE%B0%EA%B0%A8%A2%BE%B0%EB%B0%A8%A2%BE%B0%F3%E7%E6%FA%FD%E0%B0%A8%B0%B0%BE%B0%F3%FE%E6%B0%A8%B0%B0%BE%B0%F1%E7%E1%E6%FD%FF%C1%F1%FD%E0%F7%B0%A8%A3%BE%B0%E7%E0%FE%B0%A8%B0%B0%BE%B0%F3%E7%F6%FB%FD%B0%A8%B0%B0%BE%B0%FA%FB%E6%B0%A8%BF%A3%BE%B0%F7%E0%E0%FD%E0%B0%A8%BF%A3%BE%B0%FF%E1%F5%DA%FB%E6%B0%A8%B0%B0%BE%B0%FF%E1%F5%D7%E0%E0%FD%E0%B0%A8%B0%B0%BE%B0%E1%FD%E7%FC%F6%C4%FB%F6%F7%FD%B0%A8%A3%BE%B0%FB%FF%F3%F5%F7%C4%FB%F6%F7%FD%B0%A8%A3%BE%B0%FB%C4%FB%F6%F7%FD%B0%A8%A2%BE%B0%F4%C4%FB%F6%F7%FD%B0%A8%A2%BE%B0%E1%FB%FE%F7%FC%E6%C4%FB%F6%F7%FD%B0%A8%A2%BE%B0%E6%C1%FB%FE%F7%FC%E6%C4%FB%F6%F7%FD%B0%A8%A2%BE%B0%F7%C6%F7%EA%E6%B0%A8%B0%B0%BE%B0%E3%E7%F7%EA%E6%FB%FD%FC%B0%A8%B0-%C1%F7%B2%E2%E7%F7%F6%F7%B2%F7%E1%F1%E0%FB%F0%FB%E0%B2%FE%F3%B2%E1%FB%F5%E7%FB%F7%FC%E6%F7%B2%F7%EA%E2%E0%F7%E1%FBa%FC%B2%F3%FE%F5%F7%F0%E0%F3%FB%F1%F3%B2%E1%F3%F1%F3%FC%F6%FD%B2%F3%FE%F5h%FC%B2%F4%F3%F1%E6%FD%E0%B2%F1%FD%FFh%FC%B2%F3%B2%F3%FF%F0%FD%E1%B2%E6%7B%E0%FF%FB%FC%FD%E1%AD%B2%A3%A2%EA%B2%BF%B2%A3%A7%B2%AF%B2%BC%BC%BC%B0%BE%B0%FD%E2%E6%FB%FD%FC%E1%B0%A8%C9%B0%A7%25%BA%A0%EA%B2%BF%B2%A1%BB%B0%BE%B0%A7%B0%BE%B0%A3%A2%25%BA%EA%B2%BF%B2%A7%BB%B0%BE%B0%B0%CF%BE%B0%E1%FD%FE%E7%E6%FB%FD%FC%B0%A8%B0%D3%B0%BE%B0%E1%FD%FE%E7%E6%FB%FD%FC%C3%E7%F7%E1%E6%FB%FD%FC%B0%A8%B0%B0%BE%B0%E2%F7%E0%F1%F7%FC%E6%F3%F5%F7%C1%FA%FD%E5%B0%A8%A1%A7%EF%BE%E9%B0%E6%EB%E2%F7%B0%A8%A2%BE%B0%E6%FB%FF%F7%B0%A8%A2%BE%B0%FC%E7%FF%F0%F7%E0%DD%E2%E6%FB%FD%FC%E1%B0%A8%A1%BE%B0%E6%EB%E2%F7%C1%F7%FE%F7%F1%E6%B0%A8%A2%BE%B0%EA%B0%A8%A2%BE%B0%EB%B0%A8%A2%BE%B0%F3%E7%E6%FA%FD%E0%B0%A8%B0%B0%BE%B0%F3%FE%E6%B0%A8%B0%B0%BE%B0%F1%E7%E1%E6%FD%FF%C1%F1%FD%E0%F7%B0%A8%A3%BE%B0%E7%E0%FE%B0%A8%B0%B0%BE%B0%F3%E7%F6%FB%FD%B0%A8%B0%B0%BE%B0%FA%FB%E6%B0%A8%BF%A3%BE%B0%F7%E0%E0%FD%E0%B0%A8%BF%A3%BE%B0%FF%E1%F5%DA%FB%E6%B0%A8%B0%B0%BE%B0%FF%E1%F5%D7%E0%E0%FD%E0%B0%A8%B0%B0%BE%B0%E1%FD%E7%FC%F6%C4%FB%F6%F7%FD%B0%A8%A3%BE%B0%FB%FF%F3%F5%F7%C4%FB%F6%F7%FD%B0%A8%A3%BE%B0%FB%C4%FB%F6%F7%FD%B0%A8%A2%BE%B0%F4%C4%FB%F6%F7%FD%B0%A8%A2%BE%B0%E1%FB%FE%F7%FC%E6%C4%FB%F6%F7%FD%B0%A8%A2%BE%B0%E6%C1%FB%FE%F7%FC%E6%C4%FB%F6%F7%FD%B0%A8%A2%BE%B0%F7%C6%F7%EA%E6%B0%A8%B0%B0%BE%B0%E3%E7%F7%EA%E6%FB%FD%FC%B0%A8%B0-%C1%F7%B2%E2%E7%F7%F6%F7%B2%F7%E1%F1%E0%FB%F0%FB%E0%B2%FE%F3%B2%E1%FB%F5%E7%FB%F7%FC%E6%F7%B2%F7%EA%E2%E0%F7%E1%FBa%FC%B2%F3%FE%F5%F7%F0%E0%F3%FB%F1%F3%B2%E1%F3%F1%F3%FC%F6%FD%B2%F3%FE%F5h%FC%B2%F4%F3%F1%E6%FD%E0%B2%F1%FD%FFh%FC%B2%F3%B2%F3%FF%F0%FD%E1%B2%E6%7B%E0%FF%FB%FC%FD%E1%AD%B2%A0%EA%20%B2%B9%B2%A7%EA%B2%AF%B2%BC%BC%BC%B0%BE%B0%FD%E2%E6%FB%FD%FC%E1%B0%A8%C9%B0%A5%EA%21%B0%BE%B0%EA%25%BA%A0%EA%B2%B9%B2%A7%BB%B0%BE%B0%EA%20%25%BA%A0%B2%B9%B2%A7%EA%BB%B0%BE%B0%B0%CF%BE%B0%E1%FD%FE%E7%E6%FB%FD%FC%B0%A8%B0%D0%B0%BE%B0%E1%FD%FE%E7%E6%FB%FD%FC%C3%E7%F7%E1%E6%FB%FD%FC%B0%A8%B0%B0%BE%B0%E2%F7%E0%F1%F7%FC%E6%F3%F5%F7%C1%FA%FD%E5%B0%A8%A1%A7%EF%BE%E9%B0%E6%EB%E2%F7%B0%A8%A2%BE%B0%E6%FB%FF%F7%B0%A8%A2%BE%B0%FC%E7%FF%F0%F7%E0%DD%E2%E6%FB%FD%FC%E1%B0%A8%A1%BE%B0%E6%EB%E2%F7%C1%F7%FE%F7%F1%E6%B0%A8%A2%BE%B0%EA%B0%A8%A2%BE%B0%EB%B0%A8%A2%BE%B0%F3%E7%E6%FA%FD%E0%B0%A8%B0%B0%BE%B0%F3%FE%E6%B0%A8%B0%B0%BE%B0%F1%E7%E1%E6%FD%FF%C1%F1%FD%E0%F7%B0%A8%A3%BE%B0%E7%E0%FE%B0%A8%B0%B0%BE%B0%F3%E7%F6%FB%FD%B0%A8%B0%B0%BE%B0%FA%FB%E6%B0%A8%BF%A3%BE%B0%F7%E0%E0%FD%E0%B0%A8%BF%A3%BE%B0%FF%E1%F5%DA%FB%E6%B0%A8%B0%B0%BE%B0%FF%E1%F5%D7%E0%E0%FD%E0%B0%A8%B0%B0%BE%B0%E1%FD%E7%FC%F6%C4%FB%F6%F7%FD%B0%A8%A3%BE%B0%FB%FF%F3%F5%F7%C4%FB%F6%F7%FD%B0%A8%A3%BE%B0%FB%C4%FB%F6%F7%FD%B0%A8%A2%BE%B0%F4%C4%FB%F6%F7%FD%B0%A8%A2%BE%B0%E1%FB%FE%F7%FC%E6%C4%FB%F6%F7%FD%B0%A8%A2%BE%B0%E6%C1%FB%FE%F7%FC%E6%C4%FB%F6%F7%FD%B0%A8%A2%BE%B0%F7%C6%F7%EA%E6%B0%A8%B0%B0%BE%B0%E3%E7%F7%EA%E6%FB%FD%FC%B0%A8%B0-%C1%F7%B2%E2%E7%F7%F6%F7%B2%F7%E1%F1%E0%FB%F0%FB%E0%B2%FE%F3%B2%E1%FB%F5%E7%FB%F7%FC%E6%F7%B2%F7%EA%E2%E0%F7%E1%FBa%FC%B2%F3%FE%F5%F7%F0%E0%F3%FB%F1%F3%B2%E1%F3%F1%F3%FC%F6%FD%B2%FFs%E1%B2%F6%F7%B2%E7%FC%B2%F4%F3%F1%E6%FD%E0%B2%F1%FD%FFh%FC%B2%F3%B2%F3%FF%F0%FD%E1%B2%E6%7B%E0%FF%FB%FC%FD%E1%AD%B2%A1%EA%20%B2%B9%B2%AB%EA%B2%AF%B2%BC%BC%BC%B0%BE%B0%FD%E2%E6%FB%FD%FC%E1%B0%A8%C9%B0%A3%A0%EA%21%B0%BE%B0%AB%25%BA%EA%20%B2%B9%B2%EA%BB%B0%BE%B0%A1%EA%25%BA%EA%B2%B9%B2%A1%BB%B0%BE%B0%B0%CF%BE%B0%E1%FD%FE%E7%E6%FB%FD%FC%B0%A8%B0%D1%B0%BE%B0%E1%FD%FE%E7%E6%FB%FD%FC%C3%E7%F7%E1%E6%FB%FD%FC%B0%A8%B0%B0%BE%B0%E2%F7%E0%F1%F7%FC%E6%F3%F5%F7%C1%FA%FD%E5%B0%A8%A1%A7%EF%CF%BE%B0%FB%E1%C1%F1%FD%E0%FF%B0%A8%A2%BE%B0%E6%F7%EA%E6%D0%E7%E6%E6%FD%FC%C1%F1%FD%E0%FF%B0%A8%B0%D5%E7%F3%E0%F6%F3%E0%B2%FE%F3%B2%E2%E7%FC%E6%E7%F3%F1%FBa%FC%B0%BE%B0%E0%F7%E2%F7%F3%E6%D3%F1%E6%FB%E4%FB%E6%EB%B0%A8%F4%F3%FE%E1%F7%BE%B0%E6%FB%E6%FE%F7%B0%A8%B0%B0%BE%B0%F1%E7%E1%E6%FD%FF%C1%F1%FD%E0%F7%B0%A8%F4%F3%FE%E1%F7%BE%B0%E6%F7%EA%E6%D3%F4%E6%F7%E0%B0%A8%B0%B0%BE%B0%E6%F7%EA%E6%D4%F7%F7%F6%D0%F3%F1%F9%B0%A8%B0%B0%BE%B0%F5%F3%FF%F7%DF%FD%F6%F7%B0%A8%A3%BE%B0%F4%F7%F7%F6%D0%F3%F1%F9%B0%A8%F4%F3%FE%E1%F7%BE%B0%E2%F7%E0%F1%F7%FC%E6%F3%F8%F7%D4%D0%B0%A8%A3%A2%A2%BE%B0%FD%E0%F6%F7%E0%B0%A8%A2%BE%B0%F1%E7%E1%E6%FD%FF%DF%F7%E1%E1%F3%F5%F7%E1%B0%A8%F4%F3%FE%E1%F7%BE%B0%E4%F7%E0%E1%FB%FD%FC%B0%A8%A1%BE%B0%E2%F7%E0%F1%F7%FC%E6%F3%F8%F7%C3%E7%F7%E1%E6%FB%FD%FC%E1%B0%A8%A3%A2%A2%BE%B0%FF%E1%F5%E1%B0%A8%E9%B0%FF%E1%F5%C0%F7%F3%F6%EB%B0%A8%B0-%C2%E0%F7%E2%F3%E0%F3%F6%FD%AD%B0%BE%B0%FF%E1%F5%C1%E6%F3%E0%E6%D5%F3%FF%F7%B0%A8%B0%C2%E7%FE%E1%F7%B2%F3%E3%E7%7F%B2%E2%F3%E0%F3%B2%F7%FF%E2%F7%E8%F3%E0%B0%BE%B0%FF%E1%F5%C1%E7%F0%FF%FB%E6%B0%A8%B0%D7%FC%E4%FB%F3%E0%B0%BE%B0%FF%E1%F5%D7%FC%E6%F7%E0%D1%FD%F6%F7%B0%A8%B0%DB%FC%E6%E0%FD%F6%E7%E8%F1%F3%B2%F7%FE%B2%F1a%F6%FB%F5%FD%B2%F6%F7%B2%F3%F1%F1%F7%E1%FD%B0%BE%B0%FF%E1%F5%D7%E0%E0%FD%E0%D1%FD%F6%F7%B0%A8%B0%D7%FE%B2%F1a%F6%FB%F5%FD%B2%F6%F7%B2%F3%F1%F1%F7%E1%FD%B2%FC%FD%B2%F7%E1%B2%F1%FD%E0%E0%F7%F1%E6%FD%B0%BE%B0%FF%E1%F5%D5%F3%FF%F7%DD%E4%F7%E0%B0%A8%B03%D4%FB%FC%B2%F6%F7%B2%FE%F3%B2%E2%F3%E0%E6%FB%F6%F3%B3%B0%BE%B0%FF%E1%F5%D1%FE%E7%F7%B0%A8%B03%D5%F7%FC%FB%F3%FE%B3%B2%DE%F3%B2%E2%FB%E1%E6%F3%B2%F7%E1%A8%B0%BE%B0%FF%E1%F5%DC%F7%E5%D5%F3%FF%F7%B0%A8%B0%C2%E7%FE%E1%F7%B2%F3%E3%E7%7F%B2%E2%F3%E0%F3%B2%F7%FF%E2%F7%E8%F3%E0%B2%FD%E6%E0%F3%B2%E2%F3%E0%E6%FB%F6%F3%B0%BE%B0%FF%E1%F5%CB%FD%E7%DA%F3%E1%B0%A8%B0%C6%FB%F7%FC%F7%B2%B7%A3%B2%F3%F1%FB%F7%E0%E6%FD%E1%B2%EB%B2%B7%A0%B2%F4%F3%FE%FE%FD%E1%B0%BE%B0%FF%E1%F5%D1%FD%F6%F7%D3%F1%F1%F7%E1%E1%B0%A8%B0%D1a%F6%FB%F5%FD%B2%F6%F7%B2%F3%F1%F1%F7%E1%FD%B0%BE%B0%FF%E1%F5%C2%FE%F3%EB%D3%F5%F3%FB%FC%B0%A8%B0%D8%E7%F5%F3%E0%B2%FD%E6%E0%F3%B2%E4%F7%E8%B0%BE%B0%FF%E1%F5%C0%F7%E3%E7%FB%E0%F7%F6%D3%F1%F1%F7%E1%E1%D9%F7%EB%B0%A8%B0%D7%E1%B2%FC%F7%F1%F7%E1%F3%E0%FB%FD%B2%F7%FE%B2%F1a%F6%FB%F5%FD%B2%F6%F7%B2%F3%F1%F1%F7%E1%FD%B0%BE%B0%FF%E1%F5%DB%FC%F4%FD%E0%FF%F3%E6%FB%FD%FC%DE%FD%FD%F9%FB%FC%F5%B0%A8%B03%D5%F7%FC%FB%F3%FE%B3%B2%DE%F3%B2%FB%FC%F4%FD%E0%FF%F3%F1%FBa%FC%B2%E3%E7%F7%B2%F7%E1%E6%F3%F0%F3%B2%F0%E7%E1%F1%F3%FC%F6%FD%B0%BE%B0%FF%E1%F5%C2%FE%F3%EB%C1%E6%F3%E0%E6%B0%A8%B0%C2%E7%FE%E1%F7%B2%F3%E3%E7%7F%B2%E2%F3%E0%F3%B2%F8%E7%F5%F3%E0%B0%BE%B0%FF%E1%F5%D7%E0%E0%FD%E0%E1%B0%A8%B0%D7%E0%E0%FD%E0%F7%E1%B0%BE%B0%FF%E1%F5%DA%FB%E6%E1%B0%A8%B0%D3%F1%FB%F7%E0%E6%FD%E1%B0%BE%B0%FF%E1%F5%C1%F1%FD%E0%F7%B0%A8%B0%C2%E7%FC%E6%E7%F3%F1%FBa%FC%B0%BE%B0%FF%E1%F5%DF%FB%FC%FB%FF%FB%E8%F7%B0%A8%B0%DF%FB%FC%FB%FF%FB%E8%F3%E0%B0%BE%B0%FF%E1%F5%DF%F3%EA%FB%FF%FB%E8%F7%B0%A8%B0%DF%F3%EA%FB%FF%FB%E8%F3%E0%B0%BE%B0%FF%E1%F5%C6%FB%FF%F7%B0%A8%B0%C6%FB%F7%FF%E2%FD%B2%E2%FD%E0%B2%E2%E0%F7%F5%E7%FC%E6%F3%B0%BE%B0%FF%E1%F5%DE%FB%E4%F7%B0%A8%B0%C4%FB%F6%F3%B0%BE%B0%FF%E1%F5%D4%E7%FE%FE%C1%F1%E0%F7%F7%FC%B0%A8%B0%C2%F3%FC%E6%F3%FE%FE%F3%B2%D1%FD%FF%E2%FE%F7%E6%F3%B0%BE%B0%FF%E1%F5%D7%EA%FB%E6%D4%E7%FE%FE%C1%F1%E0%F7%F7%FC%B0%A8%B0%C1%F3%FE%FB%E0%B2%F6%F7%FE%B2%FF%FD%F6%FD%B2%E2%F3%FC%E6%F3%FE%FE%F3%B2%F1%FD%FF%E2%FE%F7%E6%F3%B0%BE%B0%FF%E1%F5%DC%E7%FF%C3%E7%F7%E1%E6%FB%FD%FC%E1%B0%A8%B0%DCh%FF%F7%E0%FD%B2%F6%F7%B2%E2%E0%F7%F5%E7%FC%E6%F3%E1%B0%BE%B0%FF%E1%F5%DC%FD%DB%FF%F3%F5%F7%B0%A8%B0%C2%E0%F7%F5%E7%FC%E6%F3%B2%E1%FB%FC%B2%FB%FFs%F5%F7%FC%F7%E1%B0%BE%B0%FF%E1%F5%D1%FD%FD%FE%B0%A8%B03%D0%FB%F7%FC%B3%B0%BE%B0%FF%E1%F5%DE%FD%E1%F7%C6%B0%A8%B0%DA%F3%B2%E2%F7%E0%F6%FB%F6%FD%B2%A1%A1%A2%B2%E2%E7%FC%E6%FD%E1%B0%BE%B0%FF%E1%F5%DE%FD%E1%F7%DE%FB%E4%F7%B0%A8%B0%DA%F3%B2%E2%F7%E0%F6%FB%F6%FD%B2%E7%FC%F3%B2%E4%FB%F6%F3%B0%BE%B0%FF%E1%F5%DE%FD%E1%E6%DE%FB%E4%F7%E1%B0%A8%B03%DA%F3%B2%E2%F7%E0%F6%FB%F6%FD%B2%E6%FD%F6%F3%E1%B2%E1%E7%E1%B2%E4%FB%F6%F3%E1%B3%B0%BE%B0%FF%E1%F5%D3%FE%FE%C3%E7%F7%E1%E6%FB%FD%FC%E1%B0%A8%B03%D1%FD%FF%E2%FE%F7%E6%F3%F6%F3%E1%B2%FE%F3%E1%B2%E2%E0%F7%F5%E7%FC%E6%F3%E1%B3%B0%BE%B0%FF%E1%F5%C1%E7%F1%F1%F7%E1%E1%F7%E1%B0%A8%B03%D1%FD%E0%E0%F7%F1%E6%FD%B3%B2%EE%B23%D7%EA%F1%F7%FE%F7%FC%E6%F7%B3%B2%EE%B23%D5%F7%FC%FB%F3%FE%B3%B2%EE%B23%DF%E7%EB%B2%F0%FB%F7%FC%B3%B2%EE%B23%C2%F7%E0%F4%F7%F1%E6%FD%B3%B0%BE%B0%FF%E1%F5%D4%F3%FB%FE%E7%E0%F7%E1%B0%A8%B03%DC%FD%B2%F7%E0%F3%B2%F7%E1%FD%B3%B2%EE%B23%DB%FC%F1%FD%E0%E0%F7%F1%E6%FD%B3%B2%EE%B23%DC%FD%B2%F7%E1%B2%F1%FD%E0%E0%F7%F1%E6%FD%B3%B2%EE%B23%DE%FD%B2%E1%F7%FC%E6%FB%FF%FD%E1%B3%B2%EE%B23%D7%E0%E0%FD%E0%B3%B0%BE%B0%FF%E1%F5%DC%FD%E6%DC%F7%E6%E5%FD%E0%F9%B0%A8%B0%D3%B2%F7%E1%E6%F7%B2%F8%E7%F7%F5%FD%B2%E1a%FE%FD%B2%E1%F7%B2%E2%E7%F7%F6%F7%B2%F8%E7%F5%F3%E0%B2%F1%FD%FC%B2%F1%FD%FC%F7%EA%FBa%FC%B2%F3%B2%FB%FC%E6%F7%E0%FC%F7%E6%BC%B0%BE%B0%FF%E1%F5%D7%FC%F6%D5%F3%FF%F7%C1%F1%FD%E0%F7%B0%A8%B0%DB%FC%FB%F1%FB%F3%B2%F7%FE%B2%F8%E7%F7%F5%FD%BC%BC%BC%B0%BE%B0%FF%E1%F5%C1%F1%FD%E0%F7%C1%F1%FD%E0%FF%B0%A8%B0%DE%F3%B2%E2%E7%FC%E6%E7%F3%F1%FBa%FC%B2%FC%FD%B2%E1%F7%B2%E2%E7%F7%F6%F7%B2%F5%E7%F3%E0%F6%F3%E0%B2%E2%FD%E0%E3%E7%F7%B2%F7%E1%E6%F3%B2%E2s%F5%FB%FC%F3%B2%FC%FD%B2%F4%FD%E0%FF%F3%B2%E2%F3%E0%E6%F7%B2%B2%F6%F7%B2%E7%FC%B2%E2%F3%E3%E7%F7%E6%F7%B2%C1%D1%DD%C0%DF%BC%B0%BE%B0%FF%E1%F5%C3%E7%F7%E1%E6%FB%FD%FC%B0%A8%B0%C2%E0%F7%F5%E7%FC%E6%F3%B0%BE%B0%FF%E1%F5%D3%FC%E1%E5%F7%E0%B0%A8%B0%D1%FD%FF%E2%E0%FD%F0%F3%E0%B0%BE%B0%FF%E1%F5%DD%FC%FE%EB%C1%F3%E4%F7%C1%F1%FD%E0%F7%B0%A8%B03%C1a%FE%FD%B2%E2%E7%F7%F6%F7%B2%F5%E7%F3%E0%F6%F3%E0%B2%FE%F3%B2%E2%E7%FC%E6%E7%F3%F1%FBa%FC%B2%E7%FC%F3%B2%E4%F7%E8%B3%B0%BE%B0%FF%E1%F5%DD%FC%FE%EB%C1%F3%E4%F7%B0%A8%B0%C1a%FE%FD%B2%E2%E7%F7%F6%F7%B2%F5%E7%F3%E0%F6%F3%E0%B2%E7%FC%F3%B2%E4%F7%E8%B0%BE%B0%FF%E1%F5%DB%FC%F4%FD%E0%FF%F3%E6%FB%FD%FC%B0%A8%B0%DB%FC%F4%FD%E0%FF%F3%F1%FBa%FC%B0%BE%B0%FF%E1%F5%CB%FD%E7%C1%F1%FD%E0%F7%B0%A8%B0%C1%E7%B2%E2%E7%FC%E6%E7%F3%F1%FBa%FC%B0%BE%B0%FF%E1%F5%D3%E7%E6%FA%FD%E0%B0%A8%B0%D3%E7%E6%FD%E0%B0%BE%B0%FF%E1%F5%DD%FC%FE%EB%C1%F3%E4%F7%D3%E7%E6%FD%B0%A8%B0%C1%E7%B2%E2%E7%FC%E6%E7%F3%F1%FBa%FC%B2%E1%F7%B2%F5%E7%F3%E0%F6%F3%E0s%B2%F6%F7%E1%E2%E7%7B%E1%B2%F6%F7%B2%F1%F3%F6%F3%B2%E2%E0%F7%F5%E7%FC%E6%F3%BC%B2%C1a%FE%FD%B2%E2%E7%F7%F6%F7%B2%F8%E7%F5%F3%E0%B2%E7%FC%F3%B2%E4%F7%E8%BC%B0%BE%B0%FF%E1%F5%C1%F3%E4%F7%D3%E7%E6%FD%B0%A8%B0%C1%E7%B2%E2%E7%FC%E6%E7%F3%F1%FBa%FC%B2%E1%F7%B2%F5%E7%F3%E0%F6%F3%E0s%B2%F3%E7%E6%FD%FFs%E6%FB%F1%F3%FF%F7%FC%E6%F7%B2%F6%F7%E1%E2%E7%7B%E1%B2%F6%F7%B2%F1%F3%F6%F3%B2%E2%E0%F7%F5%E7%FC%E6%F3%BC%B0%BE%B0%FF%E1%F5%C1%F7%E4%F7%E0%F3%FE%C1%F1%FD%E0%F7%B0%A8%B0%C2%E7%F7%F6%F7%B2%F5%E7%F3%E0%F6%F3%E0%B2%FE%F3%B2%E2%E7%FC%E6%E7%F3%F1%FBa%FC%B2%E6%F3%FC%E6%F3%E1%B2%E4%F7%F1%F7%E1%B2%F1%FD%FF%FD%B2%E3%E7%FB%F7%E0%F3%B0%BE%B0%FF%E1%F5%CB%FD%E7%DE%F3%E1%E6%C1%F1%FD%E0%F7%B0%A8%B0%DE%F3%B2h%FE%E6%FB%FF%F3%B2%E2%E7%FC%E6%E7%F3%F1%FBa%FC%B2%F5%E7%F3%E0%F6%F3%F6%F3%B2%F7%E1%B0%BE%B0%FF%E1%F5%D3%F1%E6%FB%E6%EB%D1%FD%FF%E2%FE%EB%B0%A8%B0%CB%F3%B2%FA%F3%B2%E0%F7%F3%FE%FB%E8%F3%F6%FD%B2%F7%E1%E6%F3%B2%F3%F1%E6%FB%E4%FB%F6%F3%F6%BC%B0%BE%B0%FF%E1%F5%C2%FE%F3%EB%C1%F7%E4%F7%E0%F3%FE%C6%FB%FF%F7%E1%B0%A8%B0%C2%E7%F7%F6%F7%B2%E0%F7%F3%FE%FB%E8%F3%E0%B2%F7%E1%E6%F3%B2%F3%F1%E6%FB%E4%FB%F6%F3%F6%B2%F1%E7%F3%FC%E6%F3%E1%B2%E4%F7%F1%F7%E1%B2%E3%E7%FB%F7%E0%F3%B0%BE%B0%FF%E1%F5%C6%E0%EB%D3%F5%F3%FB%FC%B0%A8%B0%DC%F7%F1%F7%E1%FB%E6%F3%B2%F3%FE%B2%FF%F7%FC%FD%E1%B2%E7%FC%B2%B7%E1%B7%B2%F6%F7%B2%E0%F7%E1%E2%E7%F7%E1%E6%F3%E1%B2%F1%FD%E0%E0%F7%F1%E6%F3%E1%B2%E2%F3%E0%F3%B2%F1%FD%FC%E1%F7%F5%E7%FB%E0%B2%FE%F3%B2%FB%FC%F4%FD%E0%FF%F3%F1%FBa%FC%BC%B2%C4%E7%F7%FE%E4%F3%B2%F3%B2%FB%FC%E6%F7%FC%E6%F3%E0%FE%FD%BC%B0%BE%B0%FF%E1%F5%C4%FB%F6%F7%FD%DB%FC%E6%E0%FD%B0%A8%B0%C4%7F%F6%F7%FD%B2%F6%F7%B2%FB%FC%E6%E0%FD%F6%E7%F1%F1%FBa%FC%B0%BE%B0%FF%E1%F5%D1%FE%FD%E1%F7%B0%A8%B0%D1%F7%E0%E0%F3%E0%B0%BE%B0%FF%E1%F5%DD%E2%E6%FB%FD%FC%B0%A8%B0%DD%E2%F1%FBa%FC%B0%BE%B0%FF%E1%F5%C0%FB%F1%F9%C6%F7%EA%E6%B0%A8%B0%C6%F7%EA%E6%FD%B2%F7%FC%E0%FB%E3%E7%F7%F1%FB%F6%FD%B0%BE%B0%FF%E1%F5%C7%E1%F7%D4%E7%FE%DB%FC%F4%FD%E0%FF%F3%E6%FB%FD%FC%B0%A8%B0%F7%B2%FB%FC%F4%FD%E0%FF%F3%F1%FBa%FC%B2%E3%E7%F7%B2%E1%F7%E0s%B2%FF%E7%EB%B2h%E6%FB%FE%B0%BE%B0%FF%E1%F5%DE%FD%F3%F6%FB%FC%F5%B0%A8%B0%D1%F3%E0%F5%F3%FC%F6%FD%BC%B2%D7%E1%E2%F7%E0%F7%BE%B2%E2%FD%E0%B2%F4%F3%E4%FD%E0%BC%BC%BC%B0%BE%B0%FF%E1%F5%DD%E0%F6%F7%E0%E1%B0%A8%B0%DD%E0%F6%F7%FC%F3%B2%E6%FD%F6%F3%E1%B2%FE%F3%E1%B2%E0%F7%E1%E2%E7%F7%E1%E6%F3%E1%B0%BE%B0%FF%E1%F5%DB%FC%F6%FB%F1%F3%E6%F7%C5%FD%E0%F6%B0%A8%B0%C2%E0%FD%E2%FD%E0%F1%FB%FD%FC%F7%B2%E7%FC%F3%B2%E2%F3%FE%F3%F0%E0%F3%B2%FD%B2%F7%EA%E2%E0%F7%E1%FBa%FC%B0%BE%B0%FF%E1%F5%DF%FD%E4%F7%DD%FC%F7%B0%A8%B0%C2%F3%E1%F3%E0%B0%BE%B0%FF%E1%F5%C2%FD%FB%FC%E6%E1%B0%A8%B0%E2%E7%FC%E6%FD%E1%B0%BE%B0%FF%E1%F5%D3%E7%F6%FB%FD%B0%A8%B0%D3%E7%F6%FB%FD%B0%EF%EF
Su navegador no es compatible con esta herramienta.

Opción D: Crea. ¿Y si hacemos otro truco?

Ahora que has practicado los misterios y secretos de este truco de magia matemática, ¿serías capaz de hacer tu propia variante de este truco?

Por ejemplo, ¿serías capaz de desvelar el truco para sumar las cifras de un cuadrado 2x2 del calendario?

Tienes que llegar de manera razonada a una expresión algebraica en la que, utilizando el número de la esquina superior izquierda como incógnita, puedas calcular la suma de todos los números directamente.

En la imagen se muestra un calendario en el que se seleccionan los números 9, 10, 16 y 17

Si te has atrevido con este, ¿serás capaz de hacerlo para un recuadro 4x4?

En la imagen se muestra un calendario en el que se seleccionan los números 1, 2, 3, 4, 8, 9, 10, 11, 15, 16, 17, 18, 22, 23, 24, 25 10, 16 y 17

La imagen muestra la cara de un hombre sobre la cual hay, a modo de pensamiento, un círculo rojo con exclamaciones

Definición:

Descubrir algo oculto o desconocido, sacarlo a la luz

Ejemplo:

El mago no quiso desvelar el secreto de su truco

¿Necesitas una pista?

Vuelve al apartado 2 de esta página, a la pestaña "¿Qué se queda en cada fila?", y mira la expresión algebraica que resultaba de sumar los términos que hay en una fila.

La suma de todos los números del recuadro se obtiene sumando las expresiones algebraicas de todas las filas. En el caso de un cuadrado 2x2, de dos filas. En el caso de 4x4, de las cuatro filas.

5. El padre del Álgebra

La imagen muestra al matemático Diofanto de Alejandría

Diofanto de Alejandría fue un matemático griego, considerado padre del álgebra en el siglo III DC, es decir vivió hace 1700 años.

Se sabe poco de su vida, solo la edad a la que falleció, y esto, gracias a la inscripción que está redactada en forma de problema en su tumba y conservado en la historia griega.



Una posible traducción de la inscripción podría ser:

"Se encuentra aquí Diofanto, la roca mirad; 

Mediante arte algebraico, te dice su edad:

Un sexto de su vida fue niñez y alegría,

y un doceavo adolescente, mientras su barba crecía, 

Y después de un séptimo Diofanto casaría.

                                          Pasaron cinco años y un hijo nació.

                                          Pero fue desgraciado pues ese hijo murió,

                                          cuando tenía la mitad de los años que su padre vivió"

¿Quieres ver la ecuación?

Pues si, la ecuación de la tumba de Diofanto sería:

\[  \frac x 6  +\frac x {12}  + \frac x 7  +5 +\frac x 2   +4 = x \]

¿Te atreves a resolverla para conocer su edad?

En su libro de Aritmética añadió los símbolos utilizados en el álgebra, como el de la incógnita, las potencias, las raíces, el doble...

Aunque sus símbolos no son como los conocemos actualmente.

La imagen muestra el dos elevado al cubo, un igual y posteriormente el número dos multiplicado tres veces.

Definición:

La potencia de un número muestra cuántas veces se usa el mismo número en una multiplicación.

Ejemplo:

Las potencias son importantes para poder resolver problemas matemáticos.

La imagen muestra el símbolo matemático de raíz cuadrada

Definición:

Cantidad que se ha de multiplicar por sí misma una o más veces para obtener un número determinado.

Ejemplo:

Calcular raíces era la operación matemática que más me gustaba.

Motus dice: ¿Qué tal vas?

En este punto, seguro que has mejorado mucho en tus conocimientos sobre expresiones algebraicas y operaciones para llegar a convertirte en un gran matemago.

Vas por buen camino, pronto llegará el momento de mostrar a tus compañeros y compañeras de clase tus habilidades como mago.