Criterios y proceso de evaluación

1. Criterios Generales de evaluación.

2. Criterios específicos de evaluación de la materia

Bloque 1. Procesos, métodos y actitudes en matemáticas

Criterios de evaluación Estándares de aprendizaje evaluables

1. Expresar verbalmente, de forma razonada el proceso seguido en la resolución de un problema.

2. Utilizar procesos de razonamiento y estrategias de resolución de problemas, realizando los cálculos necesarios y comprobando las soluciones obtenidas.

3. Realizar demostraciones sencillas de propiedades o teoremas relativos a contenidos algebraicos, geométricos, funcionales, estadísticos y probabilísticos.

4. Elaborar un informe científico escrito que sirva para comunicar las ideas matemáticas surgidas en la resolución de un problema o en una demostración, con el rigor y la precisión adecuados.

5. Planificar adecuadamente el proceso de investigación, teniendo en cuenta el contexto en que se desarrolla y el problema de investigación planteado.

6. Practicar estrategias para la generación de investigaciones matemáticas, a partir de: a) la resolución de un problema y la profundización posterior; b) la generalización de propiedades y leyes matemáticas; c) Profundización en algún momento de la historia de las matemáticas; concretando todo ello en contextos numéricos, algebraicos, geométricos, funcionales, estadísticos o probabilísticos.

7. Elaborar un informe científico escrito que recoja el proceso de investigación realizado, con el rigor y la precisión adecuados.

8. Desarrollar procesos de matematización en contextos de la realidad cotidiana (numéricos, geométricos, funcionales, estadísticos oprobabilísticos) a partir de la identificación de problemas en situaciones de la realidad.

9. Valorar la modelización matemática como un recurso para resolver problemas de la realidad cotidiana, evaluando la eficacia y limitaciones de los modelos utilizados o construidos.

10. Desarrollar y cultivar las actitudes personales inherentes al quehacer matemático.

11. Superar bloqueos e inseguridades ante la resolución de situaciones desconocidas.

12. Reflexionar sobre las decisiones tomadas, valorando su eficacia y aprendiendo de ellas para situaciones similares futuras.

13. Emplear las herramientas tecnológicas adecuadas, de forma autónoma, realizando cálculos numéricos, algebraicos o estadísticos, haciendo representaciones gráficas, recreando situaciones matemáticas mediante simulaciones o analizando con sentido crítico situaciones diversas que ayuden a la comprensión de conceptos matemáticos o a la resolución de problemas.

14. Utilizar las tecnologías de la información y la comunicación de modo habitual en el proceso de aprendizaje, buscando, analizando y seleccionando información relevante en Internet o en otras fuentes, elaborando documentos propios, haciendo exposiciones y argumentaciones de los mismos y compartiendo éstos en entornos apropiados para facilitar la interacción.

1.1. Expresa verbalmente, de forma razonada, el proceso seguido en la resolución de un problema, con el rigor y la precisión adecuados.

2.1. Analiza y comprende el enunciado a resolver o demostrar (datos, relaciones entre los datos, condiciones, hipótesis, conocimientos matemáticos necesarios, etc.).

2.2. Valora la información de un enunciado y la relaciona con el número de soluciones del problema.

2.3. Realiza estimaciones y elabora conjeturas sobre los resultados de los problemas a resolver, valorando su utilidad y eficacia.

2.4. Utiliza estrategias heurísticas y procesos de razonamiento en la resolución de problemas.

2.5. Reflexiona sobre el proceso de resolución de problemas.

3.1. Utiliza diferentes métodos de demostración en función del contexto matemático.

3.2. Reflexiona sobre el proceso de demostración (estructura, método, lenguaje y símbolos, pasos clave, etc.).

4.1. Usa el lenguaje, la notación y los símbolos matemáticos adecuados al contexto y a la situación.

4.2. Utiliza argumentos, justificaciones, explicaciones y razonamientos explícitos y coherentes.

4.3. Emplea las herramientas tecnológicas adecuadas al tipo de problema, situación a resolver o propiedad o teorema a demostrar, tanto en la búsqueda de resultados como para la mejora de la eficacia en la comunicación de las ideas matemáticas.

5.1. Conoce la estructura del proceso de elaboración de una investigación matemática: problema de investigación, estado de la cuestión, objetivos, hipótesis, metodología, resultados, conclusiones, etc.

5.2. Planifica adecuadamente el proceso de investigación, teniendo en cuenta el contexto en que se desarrolla y el problema de investigación planteado.

5.3. Profundiza en la resolución de algunos problemas, planteando nuevas preguntas, generalizando la situación o los resultados, etc.

6.1. Generaliza y demuestra propiedades de contextos matemáticos numéricos, algebraicos, geométricos, funcionales, estadísticos o probabilísticos.

6.2. Busca conexiones entre contextos de la realidad y del mundo de las matemáticas (la historia de la humanidad y la historia de las matemáticas; arte y matemáticas; tecnologías y matemáticas, ciencias experimentales y matemáticas, economía y matemáticas, etc.) y entre contextos matemáticos (numéricos y geométricos, geométricos y funcionales, geométricos y probabilísticos, discretos y continuos, finitos e infinitos, etc.).

7.1. Consulta las fuentes de información adecuadas al problema de investigación.

7.2. Usa el lenguaje, la notación y los símbolos matemáticos adecuados al contexto del problema de investigación.

7.3. Utiliza argumentos, justificaciones, explicaciones y razonamientos explícitos y coherentes.

7.4. Emplea las herramientas tecnológicas adecuadas al tipo de problema de investigación.

7.5. Transmite certeza y seguridad en la comunicación de las ideas, así como dominio del tema de investigación.

7.6. Reflexiona sobre el proceso de investigación y elabora conclusiones sobre el nivel de: a) resolución del problema de investigación; b) consecución de objetivos. Así mismo, plantea posibles continuaciones de la investigación; analiza los puntos fuertes y débiles del proceso y hace explícitas sus impresiones personales sobre la experiencia.

8.1. Identifica situaciones problemáticas de la realidad, susceptibles de contener problemas de interés.

8.2. Establece conexiones entre el problema del mundo real y el mundo matemático: identificando el problema o problemas matemáticos que subyacen en él, así como los conocimientos matemáticos necesarios.

8.3. Usa, elabora o construye modelos matemáticos adecuados que permitan la resolución del problema o problemas dentro del campo de las matemáticas.

8.4. Interpreta la solución matemática del problema en el contexto de la realidad.

8.5. Realiza simulaciones y predicciones, en el contexto real, para valorar la adecuación y las limitaciones de los modelos, proponiendo mejoras que aumenten su eficacia.

9.1. Reflexiona sobre el proceso y obtiene conclusiones sobre los logros conseguidos, resultados mejorables, impresiones personales del proceso, etc.

10.1. Desarrolla actitudes adecuadas para el trabajo en matemáticas: esfuerzo, perseverancia, flexibilidad para la aceptación de la crítica razonada, convivencia con la incertidumbre, tolerancia de la frustración, autoanálisis continuo, autocrítica constante, etc.

10.2. Se plantea la resolución de retos y problemas con la precisión, esmero e interés adecuados al nivel educativo y a la dificultad de la situación.

10.3. Desarrolla actitudes de curiosidad e indagación, junto con hábitos de plantear/se preguntas y buscar respuestas adecuadas; revisar de forma crítica los resultados encontrados; etc.

11.1. Toma decisiones en los procesos de resolución de problemas, de investigación y de matematización o de modelización valorando las consecuencias de las mismas y la conveniencia por su sencillez y utilidad.

12.1. Reflexiona sobre los procesos desarrollados, tomando conciencia de sus estructuras; valorando la potencia, sencillez y belleza de los métodos e ideas utilizados; aprendiendo de ello para situaciones futuras; etc.

13.1. Selecciona herramientas tecnológicas adecuadas y las utiliza para la realización de cálculos numéricos, algebraicos o estadísticos cuando la dificultad de los mismos impide o no aconseja hacerlos manualmente.

13.2. Utiliza medios tecnológicos para hacer representaciones gráficas de funciones con expresiones algebraicas complejas y extraer información cualitativa y cuantitativa sobre ellas.

13.3. Diseña representaciones gráficas para explicar el proceso seguido en la solución de problemas, mediante la utilización de medios tecnológicos.

13.4. Recrea entornos y objetos geométricos con herramientas tecnológicas interactivas para mostrar, analizar y comprender propiedades geométricas.

14.1. Elabora documentos digitales propios (texto, presentación, imagen, video, sonido,…), como resultado del proceso de búsqueda, análisis y selección de información relevante, con la herramienta tecnológica adecuada y los comparte para su discusión o difusión.

14.2. Utiliza los recursos creados para apoyar la exposición oral de los contenidos trabajados en el aula.

14.3. Usa adecuadamente los medios tecnológicos para estructurar y mejorar su proceso de aprendizaje recogiendo la información de las actividades, analizando puntos fuertes y débiles de su proceso académico y estableciendo pautas de mejora.

Bloque 2. Números y álgebra

Criterios de evaluación Estándares de aprendizaje evaluables

1. Utilizar el lenguaje matricial y las operaciones con matrices para describir e interpretar datos y relaciones en la resolución de problemas diversos.

2. Transcribir problemas expresados en lenguaje usual al lenguaje algebraico y resolverlos utilizando técnicas algebraicas determinadas (matrices, determinantes y sistemas de ecuaciones), interpretando críticamente el significado de las soluciones.

1.1. Utiliza el lenguaje matricial para representar datos facilitados mediante tablas o grafos y para representar sistemas de ecuaciones lineales, tanto de forma manual como con el apoyo de medios tecnológicos adecuados.

1.2. Realiza operaciones con matrices y aplica las propiedades de estas operaciones adecuadamente, de forma manual o con el apoyo de medios tecnológicos.

2.1. Determina el rango de una matriz, hasta orden 4, aplicando el método de Gauss o determinantes.

2.2. Determina las condiciones para que una matriz tenga inversa y la calcula empleando el método más adecuado.

2.3. Resuelve problemas susceptibles de ser representados matricialmente e interpreta los resultados obtenidos.

2.4. Formula algebraicamente las restricciones indicadas en una situación de la vida real, estudia y clasifica el sistema de ecuaciones lineales planteado, lo resuelve en los casos que sea posible, y lo aplica para resolver problemas.

Bloque 3. Análisis

Criterios de evaluación Estándares de aprendizaje evaluables

1. Estudiar la continuidad de una función en un punto o en un intervalo, aplicando los resultados que se derivan de ello y discutir el tipo de discontinuidad de una función.

2. Aplicar el concepto de derivada de una función en un punto, su interpretación geométrica y el cálculo de derivadas al estudio de fenómenos naturales, sociales o tecnológicos y a la resolución de problemas geométricos, de cálculo de límites y de optimización.

3. Calcular integrales de funciones sencillas aplicando las técnicas básicas para el cálculo de primitivas.

4. Aplicar el cálculo de integrales definidas en la medida de áreas de regiones planas limitadas por rectas y curvas sencillas que sean fácilmente representables y, en general, a la resolución de problemas.

1.1. Conoce las propiedades de las funciones continuas, y representa la función en un entorno de los puntos de discontinuidad.

1.2. Aplica los conceptos de límite y de derivada, así como los teoremas relacionados, a la resolución de problemas.

2.1. Aplica la regla de L’Hôpital para resolver indeterminaciones en el cálculo de límites.

2.2. Plantea problemas de optimización relacionados con la geometría o con las ciencias experimentales y sociales, los resuelve e interpreta el resultado obtenido dentro del contexto.

3.1. Aplica los métodos básicos para el cálculo de primitivas de funciones.

4.1. Calcula el área de recintos limitados por rectas y curvas sencillas o por dos curvas.

4.2. Utiliza los medios tecnológicos para representar y resolver problemas de áreas de recintos limitados por funciones conocidas.

Bloque 4. Geometría

Criterios de evaluación Estándares de aprendizaje evaluables

1. Resolver problemas geométricos espaciales, utilizando vectores.

2. Resolver problemas de incidencia, paralelismo y perpendicularidad entre rectas y planos utilizando las distintas ecuaciones de la recta y del plano en el espacio.

3. Utilizar los distintos productos entre vectores para calcular ángulos, distancias, áreas y volúmenes, calculando su valor y teniendo en cuenta su significado geométrico.

1.1. Realiza operaciones elementales con vectores, manejando correctamente los conceptos de base y de dependencia e independencia lineal.

2.1. Expresa la ecuación de la recta de sus distintas formas, pasando de una a otra correctamente, identificando en cada caso sus elementos característicos, y resolviendo los problemas afines entre rectas.

2.2. Obtiene la ecuación del plano en sus distintas formas, pasando de una a otra correctamente.

2.3. Analiza la posición relativa de planos y rectas en el espacio, aplicando métodos matriciales y algebraicos.

2.4. Obtiene las ecuaciones de rectas y planos en diferentes situaciones.

3.1. Maneja el producto escalar y vectorial de dos vectores, significado geométrico, expresión analítica y propiedades.

3.2. Conoce el producto mixto de tres vectores, su significado geométrico, su expresión analítica y propiedades.

3.3. Determina ángulos, distancias, áreas y volúmenes utilizando los productos escalar, vectorial y mixto, aplicándolos en cada caso a la resolución de problemas geométricos.

3.4. Realiza investigaciones utilizando programas informáticos específicos para seleccionar y estudiar situaciones nuevas de la geometría relativas a objetos como la esfera.

Bloque 4. Estadística y Probabilidad

Criterios de evaluación Estándares de aprendizaje evaluables

1. Asignar probabilidades a sucesos aleatorios en experimentos simples y compuestos (utilizando la regla de Laplace en combinación con diferentes técnicas de recuento y la axiomática de la probabilidad), así como a sucesos aleatorios condicionados (Teorema de Bayes), en contextos relacionados con el mundo real.

2. Identificar los fenómenos que pueden modelizarse mediante las distribuciones de probabilidad binomial y normal calculando sus parámetros y determinando la probabilidad de diferentes sucesos asociados.

3. Utilizar el vocabulario adecuado para la descripción de situaciones relacionadas con el azar y la estadística, analizando un conjunto de datos o interpretando de forma crítica informaciones estadísticas presentes en los medios de comunicación, en especial los relacionados con las ciencias y otros ámbitos, detectando posibles errores y manipulaciones tanto en la presentación de los datos como de las conclusiones.

1.1. Calcula la probabilidad de sucesos en experimentos simples y compuestos mediante la regla de Laplace, las fórmulas derivadas de la axiomática de Kolmogorov y diferentes técnicas de recuento.

1.2. Calcula probabilidades a partir de los sucesos que constituyen una partición del espacio muestral.

1.3. Calcula la probabilidad final de un suceso aplicando la fórmula de Bayes.

2.1. Identifica fenómenos que pueden modelizarse mediante la distribución binomial, obtiene sus parámetros y calcula su media y desviación típica.

2.2. Calcula probabilidades asociadas a una distribución binomial a partir de su función de probabilidad, de la tabla de la distribución o mediante calculadora, hoja de cálculo u otra herramienta tecnológica.

2.3. Conoce las características y los parámetros de la distribución normal y valora su importancia en el mundo científico.

2.4. Calcula probabilidades de sucesos asociados a fenómenos que pueden modelizarse mediante la distribución normal a partir de la tabla de la distribución o mediante calculadora, hoja de cálculo u otra herramienta tecnológica.

2.5. Calcula probabilidades de sucesos asociados a fenómenos que pueden modelizarse mediante la distribución binomial a partir de su aproximación por la normal valorando si se dan las condiciones necesarias para que sea válida.

3.1. Utiliza un vocabulario adecuado para describir situaciones relacionadas con el azar.

3. Proceso de evaluación

A la hora de fijar los procesos de evaluación en una enseñanza a distancia on line para personas adultas, hay que tener en cuenta cuáles son los instrumentos que utilizamos para observar cómo evoluciona el aprendizaje del alumnado.

La pieza clave en la evaluación la desempeñan las tareas que proponemos a los alumnos para que las resuelvan. El objetivo de la tarea es que el alumno aprenda haciendo. Ello es posible si la tarea se convierte en un rico instrumento didáctico que mueve al alumno a la actividad, a poner en acción los conocimientos habilidades y capacidades que ya posee. A navegar entre los contenidos, analizarlos, relacionarlos, e interactuar y razonar con ellos. De este modo será posible inducir la adquisición de nuevos conocimientos e incorporar nuevas habilidades y capacidades.

Un planteamiento de este tipo exige disponer de un proceso que determine con claridad las diversas acciones que son necesarias para trabajar las tareas. Es decir, hay que fijar qué aspectos del trabajo hecho por los alumnos es importante para: evaluar su trabajo, conocer cómo evoluciona su aprendizaje e informarle con claridad de todo ello.

Por lo tanto hemos tenido en cuenta la naturaleza del conocimiento matemático, en donde se conjugan habilidades de tipo procedimental como la soltura en los cálculos y algoritmos, junto con capacidades de índoles deductivas, inductivas y de razonamiento lógico. Además, también es necesario tener presente que el alumnado utilizará herramientas digitales para resolver la mayor parte de la tarea, redactarla y enviarla.

Los aspectos que se valorarán para las tareas individuales, globales y colaborativas serán los siguientes:

a) Presentación.

Engloba todos los aspectos relacionados con la redacción, ortografía, gramática, expresión escrita y de formato de la tarea: incluir el nombre y cumplir otras indicaciones señaladas en el desarrollo de la tarea.

Incluye la apariencia estética y el cuidado de los detalles en el resultado. Abarca también la originalidad y elaboración reflexiva en los textos e informes que se soliciten, el hecho de que no sea un simple "cortar y pegar", y que se incluya la referencia de las fuentes de donde se ha obtenido la información.

b) Argumentos y razonamiento.

Se refiere a todo lo relativo a la justificación de los pasos que se realizan para llevar a cabo la tarea. Puede ir desde la explicación por la fórmula o la operación que se utiliza, a la estrategia que se desarrolla para resolver un problema.

Incluye la revisión e interpretación en contexto de los resultados obtenidos, y la traducción del lenguaje usual al matemático.

En este apartado se consideran también actitudes relacionadas con la creación matemática, como son la curiosidad, intuición, perseverancia y capacidad para relacionar conceptos matemáticos.

c) Operaciones y cálculos.

Valora todo lo relacionado con operaciones tanto de números, expresiones algebraicas, uso de algoritmos e instrucciones secuencias para obtener ciertos parámetros, reglas y fórmulas.

En este apartado es importante mencionar que, dado el carácter online y a distancia de la enseñanza, es casi imposible apreciar las destrezas para el cálculo mental, aproximado o manual. También es necesario indicar que se reconocerá el uso reflexivo y eficaz de cualquier herramienta de cálculo digital, calculadoras científicas, hojas de cálculo, programas de cálculo simbólico o de geometría dinámica.

d) Notación y representación.

Abarca las distintas y más adecuadas formas de expresar un número, expresión algebraica o función. E incluye también tablas estadísticas, representación de elementos geométricos, grafos, matrices, diagramas de árbol…

Se añade en este apartado el uso de unidades y medidas. También implica el denominar correctamente cualquier objeto matemático.

e) Herramientas informáticas.

El abanico de este apartado es amplio. Va desde las herramientas de comunicación con el profesorado y compañeros, a el uso de programas de edición de imágenes para incluir en las plantillas de la tarea, o el de programas específicos para operar o representar objetos matemáticos (Wiris, editores de ecuaciones, Geogebra…).


Por último, también se tendrá en cuenta que el resultado de la tarea sea de elaboración propia y original, por lo que la copia parcial o total restará puntuación a la valoración anterior, en función de la amplitud y naturaleza de lo copiado.

Estos aspectos se precisarán y adaptarán en cada una de las tareas que propongamos a los alumnos, en función de los contenidos que se trabajen en ella y el carácter de la tarea.

Respecto a la tarea presencial, y teniendo en cuenta su naturaleza, se valorarán los siguientes aspectos para evaluar la resolución de las actividades propuestas:

- Corrección, claridad y coherencia en la expresión escrita.

- Uso adecuado y razonable de los contenidos.

- Corrección en los cálculos matemáticos y análisis de los resultados obtenidos.

- Expresión de la notación matemática ajustada al contexto de las cuestiones planteadas.

- Justificación razonada de los pasos efectuados para su resolución.

- Correspondencia clara con la calidad del trabajo efectuado por el alumno al realizar las tareas individuales, global y colaborativa.

Modalidad anual

En la modalidad anual se celebra una evaluación por bloque en la que se tienen en cuenta las calificaciones de las tareas entregadas y el resultado de la tarea presencial.

Modalidad cuatrimestral

En la modalidad cuatrimestral se celebrará una única sesión presencial. En esta modalidad no existe la convocatoria extraordinaria.