Descripción de la tarea

EJERCICIO 1
Escribe una matriz en la que por filas escribas datos de los cuatro primeros equipos por el mismo orden en que aparecen. En las columnas vas a escribir el número de partidos jugados, ganados, empatados y perdidos. Llama a la matriz A. A partir de esa matriz responde a las siguientes cuestiones:

A. ¿Qué dimensiones tiene? ¿Sería una matriz cuadrada?
B. El término a1,2 ¿cuánto vale?, ¿qué representa?
C. La cantidad 3, correspondiente a los partidos empatados por el Real Madrid, ¿qué lugar ocupa en la matriz?
EJERCICIO 2
Tres amigas acuden a una gran superficie a comprar ropa. María paga 135 € por 3 pantalones, 2 blusas y 1 sombrero. Juana compra 1 pantalón, 3 blusas y 1 sombrero por 100 €. Inés compra 2 pantalones, 3 blusas y 2 sombreros por 155 €.
A. Con los datos anteriores plantea un sistema de ecuaciones
B. Resuelve el anterior sistema por el método de Gauss y halla el precio de una blusa, un pantalón y un sombrero.
.
EJERCICIO 3
Una compañía fabrica tres tipos de puertas, dependiendo del uso: oficina, vivienda y garaje. Para la fabricación de cada uno de estos tipos necesita la utilización de ciertas unidades de madera, vidrio y aluminio tal y como se indica en la tabla siguiente. La compañía tiene en existencia 520 unidades de madera, 680 unidades de vidrio y 1340 unidades de aluminio. Si la compañía utiliza todas sus existencias, ¿cuántas puertas de cada tipo fabrica?
| MADERA | VIDRIO | ALUMINIO | |
| OFICINA | 2 | 1 | 2 |
| VIVIENDA | 1 | 2 | 3 |
| GARAJE | 1 | 2 | 5 |
A. Con los datos anteriores plantea un sistema de ecuaciones.
B. Resuelve el anterior sistema por el método de Gauss.
.
EJERCICIO 4
En una fábrica de bicicletas se utilizan tres máquinas: A, B y C. Cuando trabajan las tres máquinas se fabrican 2000 bicicletas. Si A no funciona pero B y C si, la producción desciende en un 25%. Si A y B funcionan pero C solo a tres cuartas partes de su rendimiento la producción baja a un 10%. Da respuesta a los siguientes apartados.
Nota: Si en alguna ecuación aparecen fracciones, acuérdate de quitar los denominadores y ordenar antes de resolver el sistema.
A. Plantea un sistema de ecuaciones que nos dé el número de bicicletas que fabrica cada máquina.
B. Resuelve el anterior sistema por el método de Gauss.