Bloque I
Contenidos, criterios de evaluación, competencias clave y estándares de aprendizaje
Unidad 1: Teoría atómico-molecular | |||
Contenidos | Criterios de evaluación y competencias clave | Estándares de aprendizaje | |
Revisión de la teoría atómica de Dalton. Leyes de los gases. Ecuación de estado de los gases ideales. Determinación de fórmulas empíricas y moleculares. Disoluciones: formas de expresar la concentración, preparación y propiedades coligativas. Métodos actuales para el análisis de sustancias: Espectroscopia y Espectrometría. |
1. Conocer la teoría atómica de Dalton así como las leyes básicas asociadas a su establecimiento. CAA, CEC. 2. Utilizar la ecuación de estado de los gases ideales para establecer relaciones entre la presión, volumen y la temperatura. CMCT, CSC. 3. Aplicar la ecuación de los gases ideales para calcular masas moleculares y determinar fórmulas moleculares. CMCT, CAA. 4. Realizar los cálculos necesarios para la preparación de disoluciones de una concentración dada y expresarla en cualquiera de las formas establecidas. CMCT, CCL, CSC. 5. Explicar la variación de las propiedades coligativas entre una disolución y el disolvente puro. CCL, CAA. 6. Utilizar los datos obtenidos mediante técnicas espectrométricas para calcular masas atómicas. CMCT, CAA. 7. Reconocer la importancia de las técnicas espectroscópicas que permiten el análisis de sustancias y sus aplicaciones para la detección de las mismas en cantidades muy pequeñas de muestras. CEC, CSC. |
1.1. Justifica la teoría atómica de Dalton y la discontinuidad de la materia a partir de las leyes fundamentales de la Química ejemplificándolo con reacciones. 2.1. Determina las magnitudes que definen el estado de un gas aplicando la ecuación de estado de los gases ideales. 2.2. Explica razonadamente la utilidad y las limitaciones de la hipótesis del gas ideal. 2.3. Determina presiones totales y parciales de los gases de una mezcla relacionando la presión total de un sistema con la fracción molar y la ecuación de estado de los gases ideales. 3.1. Relaciona la fórmula empírica y molecular de un compuesto con su composición centesimal aplicando la ecuación de estado de los gases ideales. 4.1. Expresa la concentración de una disolución en g/l, mol/l % en peso y % en volumen. Describe el procedimiento de preparación en el laboratorio, de disoluciones de una concentración determinada y realiza los cálculos necesarios, tanto para el caso de solutos en estado sólido como a partir de otra de concentración conocida. 5.1. Interpreta la variación de las temperaturas de fusión y ebullición de un líquido al que se le añade un soluto relacionándolo con algún proceso de interés en nuestro entorno. 5.2. Utiliza el concepto de presión osmótica para describir el paso de iones a través de una membrana semipermeable. 6.1. Calcula la masa atómica de un elemento a partir de los datos espectrométricos obtenidos para los diferentes isótopos del mismo. 7.1. Describe las aplicaciones de la espectroscopía en la identificación de elementos y compuestos. |
Unidad 2: Reacciones químicas | |||
Contenidos | Criterios de evaluación y competencias clave | Estándares de aprendizaje | |
Estequiometría de las reacciones. Reactivo limitante y rendimiento de una reacción. |
1. Formular y nombrar correctamente las sustancias que intervienen en una reacción química dada. CCL, CAA. 2. Interpretar las reacciones químicas y resolver problemas en los que intervengan reactivos limitantes, reactivos impuros y cuyo rendimiento no sea completo. CMCT, CCL, CAA.
|
1.1. Escribe y ajusta ecuaciones químicas sencillas de distinto tipo (neutralización, oxidación, síntesis) y de interés bioquímico o industrial. 2.1. Interpreta una ecuación química en términos de cantidad de materia, masa, número de partículas o volumen para realizar cálculos estequiométricos en la misma. 2.2. Realiza los cálculos estequiométricos aplicando la ley de conservación de la masa a distintas reacciones. 2.3. Efectúa cálculos estequiométricos en los que intervengan compuestos en estado sólido, líquido o gaseoso, o en disolución en presencia de un reactivo limitante o un reactivo impuro. 2.4. Considera el rendimiento de una reacción en la realización de cálculos estequiométricos.
|
Estos contenidos son distribuidos en temas:
Unidad 1: Teoría atómico-molecular | Tema 1. Un modelo para la materia |
Tema 2. Gases | |
Tema 3: La cantidad de sustancia | |
Tema 4. Disoluciones | |
Unidad 2: Reacciones químicas | Tema 1. Formulación inorgánica |
Tema 2. Las reacciones químicas | |
Tema 3. Cálculos en las reacciones químicas | |
Tema 4. Tipos de reacciones químicas |
Distribución temporal
En la educación a distancia, en la que el alumnado tiene la posibilidad de marcar su propio ritmo de trabajo y aprendizaje, carece de sentido hablar de distribución temporal de contenidos y actividades.
A modo de orientación, y dado que trimestralmente se procede a la evaluación del alumnado, el bloque I se estudia durante el primer trimestre.
Se recomienda la siguiente dedicación horaria:
Unidad 1 | Unidad 2 | |||||||
Temas | 1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 |
Horas recomendadas | 5 | 5 | 4 | 5 | 7 | 6 | 7 | 4 |
Nota: La recomendación que se propone es general, de forma que el alumnado debe valorar si este tiempo es óptimo o no para su caso en concreto.