Criterios y proceso de evaluación
1. Criterios Generales de evaluación.
2. Criterios específicos de evaluación de la materia
Bloque 1. Procesos, métodos y actitudes en matemáticas
Criterios de evaluación | Estándares de aprendizaje evaluables |
1. Expresar verbalmente, de forma razonada el proceso seguido en la resolución de un problema. 2. Utilizar procesos de razonamiento y estrategias de resolución de problemas, realizando los cálculos necesarios y comprobando las soluciones obtenidas. 3. Realizar demostraciones sencillas de propiedades o teoremas relativos a contenidos algebraicos, geométricos, funcionales, estadísticos y probabilísticos. 4. Elaborar un informe científico escrito que sirva para comunicar las ideas matemáticas surgidas en la resolución de un problema o en una demostración, con el rigor y la precisión adecuados. 5. Planificar adecuadamente el proceso de investigación, teniendo en cuenta el contexto en que se desarrolla y el problema de investigación planteado. 6. Practicar estrategias para la generación de investigaciones matemáticas, a partir de: a) la resolución de un problema y la profundización posterior; b) la generalización de propiedades y leyes matemáticas; c) Profundización en algún momento de la historia de las matemáticas; concretando todo ello en contextos numéricos, algebraicos, geométricos, funcionales, estadísticos o probabilísticos. 7. Elaborar un informe científico escrito que recoja el proceso de investigación realizado, con el rigor y la precisión adecuados. 8. Desarrollar procesos de matematización en contextos de la realidad cotidiana (numéricos, geométricos, funcionales, estadísticos oprobabilísticos) a partir de la identificación de problemas en situaciones de la realidad. 9. Valorar la modelización matemática como un recurso para resolver problemas de la realidad cotidiana, evaluando la eficacia y limitaciones de los modelos utilizados o construidos. 10. Desarrollar y cultivar las actitudes personales inherentes al quehacer matemático. 11. Superar bloqueos e inseguridades ante la resolución de situaciones desconocidas. 12. Reflexionar sobre las decisiones tomadas, valorando su eficacia y aprendiendo de ellas para situaciones similares futuras. 13. Emplear las herramientas tecnológicas adecuadas, de forma autónoma, realizando cálculos numéricos, algebraicos o estadísticos, haciendo representaciones gráficas, recreando situaciones matemáticas mediante simulaciones o analizando con sentido crítico situaciones diversas que ayuden a la comprensión de conceptos matemáticos o a la resolución de problemas. 14. Utilizar las tecnologías de la información y la comunicación de modo habitual en el proceso de aprendizaje, buscando, analizando y seleccionando información relevante en Internet o en otras fuentes, elaborando documentos propios, haciendo exposiciones y argumentaciones de los mismos y compartiendo éstos en entornos apropiados para facilitar la interacción. |
1.1. Expresa verbalmente, de forma razonada, el proceso seguido en la resolución de un problema, con el rigor y la precisión adecuados. 2.1. Analiza y comprende el enunciado a resolver o demostrar (datos, relaciones entre los datos, condiciones, hipótesis, conocimientos matemáticos necesarios, etc.). 2.2. Valora la información de un enunciado y la relaciona con el número de soluciones del problema. 2.3. Realiza estimaciones y elabora conjeturas sobre los resultados de los problemas a resolver, valorando su utilidad y eficacia. 2.4. Utiliza estrategias heurísticas y procesos de razonamiento en la resolución de problemas. 2.5. Reflexiona sobre el proceso de resolución de problemas. 3.1. Utiliza diferentes métodos de demostración en función del contexto matemático. 3.2. Reflexiona sobre el proceso de demostración (estructura, método, lenguaje y símbolos, pasos clave, etc.). 4.1. Usa el lenguaje, la notación y los símbolos matemáticos adecuados al contexto y a la situación. 4.2. Utiliza argumentos, justificaciones, explicaciones y razonamientos explícitos y coherentes. 4.3. Emplea las herramientas tecnológicas adecuadas al tipo de problema, situación a resolver o propiedad o teorema a demostrar, tanto en la búsqueda de resultados como para la mejora de la eficacia en la comunicación de las ideas matemáticas. 5.1. Conoce la estructura del proceso de elaboración de una investigación matemática: problema de investigación, estado de la cuestión, objetivos, hipótesis, metodología, resultados, conclusiones, etc. 5.2. Planifica adecuadamente el proceso de investigación, teniendo en cuenta el contexto en que se desarrolla y el problema de investigación planteado. 5.3. Profundiza en la resolución de algunos problemas, planteando nuevas preguntas, generalizando la situación o los resultados, etc. 6.1. Generaliza y demuestra propiedades de contextos matemáticos numéricos, algebraicos, geométricos, funcionales, estadísticos o probabilísticos. 6.2. Busca conexiones entre contextos de la realidad y del mundo de las matemáticas (la historia de la humanidad y la historia de las matemáticas; arte y matemáticas; tecnologías y matemáticas, ciencias experimentales y matemáticas, economía y matemáticas, etc.) y entre contextos matemáticos (numéricos y geométricos, geométricos y funcionales, geométricos y probabilísticos, discretos y continuos, finitos e infinitos, etc.). 7.1. Consulta las fuentes de información adecuadas al problema de investigación. 7.2. Usa el lenguaje, la notación y los símbolos matemáticos adecuados al contexto del problema de investigación. 7.3. Utiliza argumentos, justificaciones, explicaciones y razonamientos explícitos y coherentes. 7.4. Emplea las herramientas tecnológicas adecuadas al tipo de problema de investigación. 7.5. Transmite certeza y seguridad en la comunicación de las ideas, así como dominio del tema de investigación. 7.6. Reflexiona sobre el proceso de investigación y elabora conclusiones sobre el nivel de: a) resolución del problema de investigación; b) consecución de objetivos. Así mismo, plantea posibles continuaciones de la investigación; analiza los puntos fuertes y débiles del proceso y hace explícitas sus impresiones personales sobre la experiencia. 8.1. Identifica situaciones problemáticas de la realidad, susceptibles de contener problemas de interés. 8.2. Establece conexiones entre el problema del mundo real y el mundo matemático: identificando el problema o problemas matemáticos que subyacen en él, así como los conocimientos matemáticos necesarios. 8.3. Usa, elabora o construye modelos matemáticos adecuados que permitan la resolución del problema o problemas dentro del campo de las matemáticas. 8.4. Interpreta la solución matemática del problema en el contexto de la realidad. 8.5. Realiza simulaciones y predicciones, en el contexto real, para valorar la adecuación y las limitaciones de los modelos, proponiendo mejoras que aumenten su eficacia. 9.1. Reflexiona sobre el proceso y obtiene conclusiones sobre los logros conseguidos, resultados mejorables, impresiones personales del proceso, etc. 10.1. Desarrolla actitudes adecuadas para el trabajo en matemáticas: esfuerzo, perseverancia, flexibilidad para la aceptación de la crítica razonada, convivencia con la incertidumbre, tolerancia de la frustración, autoanálisis continuo, autocrítica constante, etc. 10.2. Se plantea la resolución de retos y problemas con la precisión, esmero e interés adecuados al nivel educativo y a la dificultad de la situación. 10.3. Desarrolla actitudes de curiosidad e indagación, junto con hábitos de plantear/se preguntas y buscar respuestas adecuadas; revisar de forma crítica los resultados encontrados; etc. 11.1. Toma decisiones en los procesos de resolución de problemas, de investigación y de matematización o de modelización valorando las consecuencias de las mismas y la conveniencia por su sencillez y utilidad. 12.1. Reflexiona sobre los procesos desarrollados, tomando conciencia de sus estructuras; valorando la potencia, sencillez y belleza de los métodos e ideas utilizados; aprendiendo de ello para situaciones futuras; etc. 13.1. Selecciona herramientas tecnológicas adecuadas y las utiliza para la realización de cálculos numéricos, algebraicos o estadísticos cuando la dificultad de los mismos impide o no aconseja hacerlos manualmente. 13.2. Utiliza medios tecnológicos para hacer representaciones gráficas de funciones con expresiones algebraicas complejas y extraer información cualitativa y cuantitativa sobre ellas. 13.3. Diseña representaciones gráficas para explicar el proceso seguido en la solución de problemas, mediante la utilización de medios tecnológicos. 13.4. Recrea entornos y objetos geométricos con herramientas tecnológicas interactivas para mostrar, analizar y comprender propiedades geométricas. 14.1. Elabora documentos digitales propios (texto, presentación, imagen, video, sonido,…), como resultado del proceso de búsqueda, análisis y selección de información relevante, con la herramienta tecnológica adecuada y los comparte para su discusión o difusión. 14.2. Utiliza los recursos creados para apoyar la exposición oral de los contenidos trabajados en el aula. 14.3. Usa adecuadamente los medios tecnológicos para estructurar y mejorar su proceso de aprendizaje recogiendo la información de las actividades, analizando puntos fuertes y débiles de su proceso académico y estableciendo pautas de mejora. |
Bloque 2. Números y álgebra
Criterios de evaluación | Estándares de aprendizaje evaluables |
1. Utilizar los números reales, sus operaciones y propiedades, para recoger, transformar e intercambiar información, estimando, valorando y representando los resultados en contextos de resolución de problemas. 2. Conocer los números complejos como extensión de los números reales, utilizándolos para obtener soluciones de algunas ecuaciones algebraicas. 3. Valorar las aplicaciones del número “e” y de los logaritmos utilizando sus propiedades en la resolución de problemas extraídos de contextos reales. 4. Analizar, representar y resolver problemas planteados en contextos reales, utilizando recursos algebraicos (ecuaciones, inecuaciones y sistemas) e interpretando críticamente los resultados. |
1.1. Reconoce los distintos tipos números (reales y complejos) y los utiliza para representar e interpretar adecuadamente información cuantitativa. 1.2. Realiza operaciones numéricas con eficacia, empleando cálculo mental, algoritmos de lápiz y papel, calculadora o herramientas informáticas. 1.3. Utiliza la notación numérica más adecuada a cada contexto y justifica su idoneidad. 1.4. Obtiene cotas de error y estimaciones en los cálculos aproximados que realiza valorando y justificando la necesidad de estrategias adecuadas para minimizarlas. 1.5. Conoce y aplica el concepto de valor absoluto para calcular distancias y manejar desigualdades. 1.6. Resuelve problemas en los que intervienen números reales y su representación e interpretación en la recta real. 2.1. Valora los números complejos como ampliación del concepto de números reales y los utiliza para obtener la solución de ecuaciones de segundo grado con coeficientes reales sin solución real. 2.2. Opera con números complejos, y los representa gráficamente, y utiliza la fórmula de Moivre en el caso de las potencias. 3.1. Aplica correctamente las propiedades para calcular logaritmos sencillos en función de otros conocidos. 3.2. Resuelve problemas asociados a fenómenos físicos, biológicos o económicos mediante el uso de logaritmos y sus propiedades. 4.1. Formula algebraicamente las restricciones indicadas en una situación de la vida real, estudia y clasifica un sistema de ecuaciones lineales planteado (como máximo de tres ecuaciones y tres incógnitas), lo resuelve, mediante el método de Gauss, en los casos que sea posible, y lo aplica para resolver problemas. 4.2. Resuelve problemas en los que se precise el planteamiento y resolución de ecuaciones (algebraicas y no algebraicas) e inecuaciones (primer y segundo grado), e interpreta los resultados en el contexto del problema. |
Bloque 3. Análisis
Criterios de evaluación | Estándares de aprendizaje evaluables |
1. Identificar funciones elementales, dadas a través de enunciados, tablas o expresiones algebraicas, que describan una situación real, y analizar, cualitativa y cuantitativamente, sus propiedades, para representarlas gráficamente y extraer información práctica que ayude a interpretar el fenómeno del que se derivan. 2. Utilizar los conceptos de límite y continuidad de una función aplicándolos en el cálculo de límites y el estudio de la continuidad de una función en un punto o un intervalo. 3. Aplicar el concepto de derivada de una función en un punto, su interpretación geométrica y el cálculo de derivadas al estudio de fenómenos naturales, sociales o tecnológicos y a la resolución de problemas geométricos. 4. Estudiar y representar gráficamente funciones obteniendo información a partir de sus propiedades y extrayendo información sobre su comportamiento local o global. |
1.1. Reconoce analítica y gráficamente las funciones reales de variable real elementales. 1.2. Selecciona de manera adecuada y razonada ejes, unidades, dominio y escalas, y reconoce e identifica los errores de interpretación derivados de una mala elección. 1.3. Interpreta las propiedades globales y locales de las funciones, comprobando los resultados con la ayuda de medios tecnológicos en actividades abstractas y problemas contextualizados. 1.4. Extrae e identifica informaciones derivadas del estudio y análisis de funciones en contextos reales. 2.1. Comprende el concepto de límite, realiza las operaciones elementales de cálculo de los mismos, y aplica los procesos para resolver indeterminaciones. 2.2. Determina la continuidad de la función en un punto a partir del estudio de su límite y del valor de la función, para extraer conclusiones en situaciones reales. 2.3. Conoce las propiedades de las funciones continuas, y representa la función en un entorno de los puntos de discontinuidad. 3.1. Calcula la derivada de una función usando los métodos adecuados y la emplea para estudiar situaciones reales y resolver problemas. 3.2. Deriva funciones que son composición de varias funciones elementales mediante la regla de la cadena. 3.3. Determina el valor de parámetros para que se verifiquen las condiciones de continuidad y derivabilidad de una función en un punto. 4.1. Representa gráficamente funciones, después de un estudio completo de sus características mediante las herramientas básicas del análisis. 4.2. Utiliza medios tecnológicos adecuados para representar y analizar el comportamiento local y global de las funciones. |
Bloque 4. Geometría
Criterios de evaluación | Estándares de aprendizaje evaluables |
1. Reconocer y trabajar con los ángulos en grados sexagesimales y en radianes manejando con soltura las razones trigonométricas de un ángulo, de su doble y mitad, así como las transformaciones trigonométricas usuales. 2. Utilizar los teoremas del seno, coseno y tangente y las fórmulas trigonométricas usuales para resolver ecuaciones trigonométricas así como aplicarlas en la resolución de triángulos directamente o como consecuencia de la resolución de problemas geométricos del mundo natural, geométrico o tecnológico. 3. Manejar la operación del producto escalar y sus consecuencias. Entender los conceptos de base ortogonal y ortonormal. Distinguir y manejarse con precisión en el plano euclídeo y en el plano métrico, utilizando en ambos casos sus herramientas y propiedades. 4. Interpretar analíticamente distintas situaciones de la geometría plana elemental, obteniendo las ecuaciones de rectas y utilizarlas, para resolver problemas de incidencia y cálculo de distancias. 5. Manejar el concepto de lugar geométrico en el plano. Identificar las formas correspondientes a algunos lugares geométricos usuales, estudiando sus ecuaciones reducidas y analizando sus propiedades métricas. |
1.1. Conoce las razones trigonométricas de un ángulo, su doble y mitad, así como las del ángulo suma y diferencia de otros dos. 2.1. Resuelve problemas geométricos del mundo natural, geométrico o tecnológico, utilizando los teoremas del seno, coseno y tangente y las fórmulas trigonométricas usuales. 3.1. Emplea con asiduidad las consecuencias de la definición de producto escalar para normalizar vectores, calcular el coseno de un ángulo, estudiar la ortogonalidad de dos vectores o la proyección de un vector sobre otro. 3.2. Calcula la expresión analítica del producto escalar, del módulo y del coseno del ángulo. 4.1. Calcula distancias, entre puntos y de un punto a una recta, así como ángulos de dos rectas. 4.2. Obtiene la ecuación de una recta en sus diversas formas, identificando en cada caso sus elementos característicos. 4.3. Reconoce y diferencia analíticamente las posiciones relativas de las rectas. 5.1. Conoce el significado de lugar geométrico, identificando los lugares más usuales en geometría plana así como sus características. 5.2. Realiza investigaciones utilizando programas informáticos específicos en las que hay que seleccionar, estudiar posiciones relativas y realizar intersecciones entre rectas y las distintas cónicas estudiadas. |
Bloque 4. Estadística y Probabilidad
Criterios de evaluación | Estándares de aprendizaje evaluables |
1. Describir y comparar conjuntos de datos de distribuciones bidimensionales, con variables discretas o continuas, procedentes de contextos relacionados con el mundo científico y obtener los parámetros estadísticos más usuales, mediante los medios más adecuados (lápiz y papel, calculadora, hoja de cálculo) y valorando, la dependencia entre las variables. 2. Interpretar la posible relación entre dos variables y cuantificar la relación lineal entre ellas mediante el coeficiente de correlación, valorando la pertinencia de ajustar una recta de regresión y, en su caso, la conveniencia de realizar predicciones, evaluando la fiabilidad de las mismas en un contexto de resolución de problemas relacionados con fenómenos científicos. 3. Utilizar el vocabulario adecuado para la descripción de situaciones relacionadas con la estadística, analizando un conjunto de datos o interpretando de forma crítica informaciones estadísticas presentes en los medios de comunicación, la publicidad y otros ámbitos, detectando posibles errores y manipulaciones tanto en la presentación de los datos como de las conclusiones. |
1.1. Elabora tablas bidimensionales de frecuencias a partir de los datos de un estudio estadístico, con variables discretas y continuas. 1.2. Calcula e interpreta los parámetros estadísticos más usuales en variables bidimensionales. 1.3. Calcula las distribuciones marginales y diferentes distribuciones condicionadas a partir de una tabla de contingencia, así como sus parámetros (media, varianza y desviación típica). 1.4. Decide si dos variables estadísticas son o no dependientes a partir de sus distribuciones condicionadas y marginales. 1.5. Usa adecuadamente medios tecnológicos para organizar y analizar datos desde el punto de vista estadístico, calcular parámetros y generar gráficos estadísticos. 2.1. Distingue la dependencia funcional de la dependencia estadística y estima si dos variables son o no estadísticamente dependientes mediante la representación de la nube de puntos. 2.2. Cuantifica el grado y sentido de la dependencia lineal entre dos variables mediante el cálculo e interpretación del coeficiente de correlación lineal. 2.3. Calcula las rectas de regresión de dos variables y obtiene predicciones a partir de ellas. 2.4. Evalúa la fiabilidad de las predicciones obtenidas a partir de la recta de regresión mediante el coeficiente de determinación lineal. 3.1. Describe situaciones relacionadas con la estadística utilizando un vocabulario adecuado. |
3. Proceso de evaluación
A la hora de fijar los procesos de evaluación en una enseñanza a distancia on line para personas adultas, hay que tener en cuenta cuáles son los instrumentos que utilizamos para observar cómo evoluciona el aprendizaje del alumnado.
La pieza clave en la evaluación la desempeñan las tareas que proponemos a los alumnos para que las resuelvan. El objetivo de la tarea es que el alumno aprenda haciendo. Ello es posible si la tarea se convierte en un rico instrumento didáctico que mueve al alumno a la actividad, a poner en acción los conocimientos habilidades y capacidades que ya posee. A navegar entre los contenidos, analizarlos, relacionarlos, e interactuar y razonar con ellos. De este modo será posible inducir la adquisición de nuevos conocimientos e incorporar nuevas habilidades y capacidades.
Un planteamiento de este tipo exige disponer de un proceso que determine con claridad las diversas acciones que son necesarias para trabajar las tareas. Es decir, hay que fijar qué aspectos del trabajo hecho por los alumnos es importante para: evaluar su trabajo, conocer cómo evoluciona su aprendizaje e informarle con claridad de todo ello.
Por lo tanto hemos tenido en cuenta la naturaleza del conocimiento matemático, en donde se conjugan habilidades de tipo procedimental como la soltura en los cálculos y algoritmos, junto con capacidades de índoles deductivas, inductivas y de razonamiento lógico. Además, también es necesario tener presente que el alumnado utilizará herramientas digitales para resolver la mayor parte de la tarea, redactarla y enviarla.
Los aspectos que se valorarán para las tareas individuales, globales y colaborativas serán los siguientes:
a) Presentación.
Engloba todos los aspectos relacionados con la redacción, ortografía, gramática, expresión escrita y de formato de la tarea: incluir el nombre y cumplir otras indicaciones señaladas en el desarrollo de la tarea.
Incluye la apariencia estética y el cuidado de los detalles en el resultado. Abarca también la originalidad y elaboración reflexiva en los textos e informes que se soliciten, el hecho de que no sea un simple "cortar y pegar", y que se incluya la referencia de las fuentes de donde se ha obtenido la información.
b) Argumentos y razonamiento.
Se refiere a todo lo relativo a la justificación de los pasos que se realizan para llevar a cabo la tarea. Puede ir desde la explicación por la fórmula o la operación que se utiliza, a la estrategia que se desarrolla para resolver un problema.
Incluye la revisión e interpretación en contexto de los resultados obtenidos, y la traducción del lenguaje usual al matemático.
En este apartado se consideran también actitudes relacionadas con la creación matemática, como son la curiosidad, intuición, perseverancia y capacidad para relacionar conceptos matemáticos.
c) Operaciones y cálculos.
Valora todo lo relacionado con operaciones tanto de números, expresiones algebraicas, uso de algoritmos e instrucciones secuencias para obtener ciertos parámetros, reglas y fórmulas.
En este apartado es importante mencionar que, dado el carácter online y a distancia de la enseñanza, es casi imposible apreciar las destrezas para el cálculo mental, aproximado o manual. También es necesario indicar que se reconocerá el uso reflexivo y eficaz de cualquier herramienta de cálculo digital, calculadoras científicas, hojas de cálculo, programas de cálculo simbólico o de geometría dinámica.
d) Notación y representación.
Abarca las distintas y más adecuadas formas de expresar un número, expresión algebraica o función. E incluye también tablas estadísticas, representación de elementos geométricos, grafos, matrices, diagramas de árbol…
Se añade en este apartado el uso de unidades y medidas. También implica el denominar correctamente cualquier objeto matemático.
e) Herramientas informáticas.
El abanico de este apartado es amplio. Va desde las herramientas de comunicación con el profesorado y compañeros, a el uso de programas de edición de imágenes para incluir en las plantillas de la tarea, o el de programas específicos para operar o representar objetos matemáticos (Wiris, editores de ecuaciones, Geogebra…).
Por último, también se tendrá en cuenta que el resultado de la tarea sea de elaboración propia y original, por lo que la copia parcial o total restará puntuación a la valoración anterior, en función de la amplitud y naturaleza de lo copiado.
Estos aspectos se precisarán y adaptarán en cada una de las tareas que propongamos a los alumnos, en función de los contenidos que se trabajen en ella y el carácter de la tarea.
Respecto a la tarea presencial, y teniendo en cuenta su naturaleza, se valorarán los siguientes aspectos para evaluar la resolución de las actividades propuestas:
- Corrección, claridad y coherencia en la expresión escrita.
- Uso adecuado y razonable de los contenidos.
- Corrección en los cálculos matemáticos y análisis de los resultados obtenidos.
- Expresión de la notación matemática ajustada al contexto de las cuestiones planteadas.
- Justificación razonada de los pasos efectuados para su resolución.
- Correspondencia clara con la calidad del trabajo efectuado por el alumno al realizar las tareas individuales, global y colaborativa.
Modalidad anual
En la modalidad anual se celebra una evaluación por bloque en la que se tienen en cuenta las calificaciones de las tareas entregadas y el resultado de la tarea presencial.
Modalidad cuatrimestral
En la modalidad cuatrimestral se celebrará una única sesión presencial. En esta modalidad no existe la convocatoria extraordinaria.