1. Potencia de exponente natural

un camarero con un menú como el del ejemplo

http://lewebpedagogique.com/hispadictos/tag/restaurante/
bajo licencia de creative commons

 

 

Un amigo me asaltó el otro día con una duda matemática. Me dijo que había estado en un restaurante que tenía un menú variado. Le ofrecían primer y segundo plato, y postre. Además, había 4 primeros platos, 4 segundos y 4 postres.


Lo mejor para mi amigo era que podía comer en el mismo restaurante sin repetir el mismo menú durante mucho tiempo. Como a él las cuentas se le dan mal, me preguntó, ¿y cuántos días puedo estar comiendo sin repetir el mismo menú?

Fácil le contesté. Tienes 4 posibilidades para el primero. Para cada una de esas posibilidades tienes 4 para el segundo, o sea, 4 posibilidades para la opción 1, 4 para la opción 2, etc... esto nos arroja que por el momento tenemos 4·4=16 posibilidades, y para cada una de ellas un postre distinto, o sea, 16 con el postre 1, 16 con el postre 2, etc... así tenemos 16·4=64 posibilidades. O mejor dicho, 4·4·4 posibilidades. Esto lo podemos expresar así:

Actividad

Dado un número real a y un número natural n, llamamos potencia de base a y exponente n, al número

que se consigue multiplicando la base a, por sí misma tantas veces como indique el exponente n. Por ejemplo:

; ;

 

Caso de estudio

Ejercicio

Utilizando la definición anterior, y tu calculadora científica resuelve las siguiente potencias:

a) ; b) ; c) ; d) ; e) ; f)

Una vez realizadas las potencias, pincha en Mostrar información para comprobarlas.

Ahora te toca a ti:

a) ; b) ; c) ; d) ; e) ; f)

Intenta calcular las siguientes potencias que, aunque parecen iguales, hay algunas diferencias:

 

a)

b)

c)

d)

e)

f)

Actividad

Si observas detenidamente el ejemplo anterior podemos sacar algunas conclusiones:

  1. Si el signo está dentro del paréntesis, formará parte de la base y por consiguiente se repetirá tantas veces como nos indica el exponente.
  2. Si el signo está fuera del paréntesis, no forma parte de la base y por consiguiente se añadirá al resultado de la potencia.
  3. Si la base es positiva, el resultado será positivo.
  4. Si la base es negativa y el exponente es par, el resultado será positivo.
  5. Si la base es negativa y el exponente es impar, el resultado será negativo.